Multi-batch single-cell comparative atlas construction by deep learning disentanglement

[1]  N. Yosef,et al.  PeakVI: A deep generative model for single-cell chromatin accessibility analysis , 2022, Cell reports methods.

[2]  Malte D. Luecken,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2021, Nature Methods.

[3]  Clifford A. Meyer,et al.  MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells , 2021, Nature Methods.

[4]  Jonathan L. Robinson,et al.  BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq , 2021, Genome biology.

[5]  Xiuqing Zhang,et al.  Single-cell brain atlas of Parkinson's disease mouse model. , 2021, Journal of genetics and genomics = Yi chuan xue bao.

[6]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[7]  Michael I. Jordan,et al.  Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models , 2021, Molecular systems biology.

[8]  P. Canoll,et al.  Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq , 2020, Genome Medicine.

[9]  V. Fellman,et al.  A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase , 2019, bioRxiv.

[10]  S. Pääbo,et al.  Organoid single-cell genomic atlas uncovers human-specific features of brain development , 2019, Nature.

[11]  Takuya Akiba,et al.  Optuna: A Next-generation Hyperparameter Optimization Framework , 2019, KDD.

[12]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[13]  Thomas Sherman,et al.  CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures , 2019, BMC Bioinformatics.

[14]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[15]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[16]  Bryan D. Bryson,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[17]  S. Aerts,et al.  cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data , 2019, Nature Methods.

[18]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[19]  Shila Ghazanfar,et al.  The human body at cellular resolution: the NIH Human Biomolecular Atlas Program , 2019, Nature.

[20]  Rafael A. Irizarry,et al.  Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model , 2019, Genome Biology.

[21]  Fabian J Theis,et al.  A test metric for assessing single-cell RNA-seq batch correction , 2018, Nature Methods.

[22]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[23]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[24]  R. Irizarry,et al.  Missing data and technical variability in single‐cell RNA‐sequencing experiments , 2018, Biostatistics.

[25]  J. Marioni,et al.  Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets , 2018, Molecular systems biology.

[26]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[27]  Y. Saeys,et al.  A comprehensive evaluation of module detection methods for gene expression data , 2018, Nature Communications.

[28]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[29]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[30]  Kevin R. Moon,et al.  Exploring single-cell data with deep multitasking neural networks , 2017, Nature Methods.

[31]  Christoph Ziegenhain,et al.  The impact of amplification on differential expression analyses by RNA-seq , 2016, Scientific Reports.

[32]  Ross C. Hardison,et al.  Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis , 2014, Genome research.

[33]  J. Kinney,et al.  Equitability, mutual information, and the maximal information coefficient , 2013, Proceedings of the National Academy of Sciences.

[34]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[35]  Laura J. Scott,et al.  Tissue-specific alternative splicing of TCF7L2 , 2009, Human molecular genetics.

[36]  P. Nelson,et al.  JNK MAPK Pathway Regulates Constitutive Transcription of CCL5 by Human NK Cells through SP11 , 2009, The Journal of Immunology.

[37]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[38]  S. Orkin,et al.  Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.

[39]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[40]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[41]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[42]  Barbara Di Camillo,et al.  How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives. , 2018, Briefings in bioinformatics.

[43]  Peter Wiemer-Hastings,et al.  Latent semantic analysis , 2004, Annu. Rev. Inf. Sci. Technol..

[44]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..