Head-mounted sensory augmentation system for navigation in low visibility environments

Sensory augmentation can be used to assist in some tasks where sensory information is limited or sparse. This thesis focuses on the design and investigation of a head-mounted vibrotactile sensory augmentation interface to assist navigation in low visibility environments such as firefighters’ navigation or travel aids for visually impaired people. A novel head-mounted vibrotactile interface comprising a 1-by-7 vibrotactile display worn on the forehead is developed. A series of psychophysical studies is carried out with this display to (1) determine the vibrotactile absolute threshold, (2) investigate the accuracy of vibrotactile localization, and (3) evaluate the funneling illusion and apparent motion as sensory phenomena that could be used to communicate navigation signals. The results of these studies provide guidelines for the design of head-mounted interfaces. A 2nd generation head-mounted sensory augmentation interface called the Mark-II Tactile Helmet is developed for the application of firefighters’ navigation. It consists of a ring of ultrasound sensors mounted to the outside of a helmet, a microcontroller, two batteries and a refined vibrotactile display composed of seven vibration motors based on the results of the aforementioned psychophysical studies. A ‘tactile language’, that is, a set of distinguishable vibrotactile patterns, is developed for communicating navigation commands to the Mark-II Tactile Helmet. Four possible combinations of two command presentation modes (continuous, discrete) and two command types (recurring, single) are evaluated for their effectiveness in guiding users along a virtual wall in a structured environment. Continuous and discrete presentation modes use spatiotemporal patterns that induce the experience of apparent movement and discrete movement on the forehead, respectively. The recurring command type presents the tactile command repeatedly with an interval between patterns of 500 ms while the single command type presents the tactile command just once when there is a change in the command. The effectiveness of this tactile language is evaluated according to the objective measures of the users’ walking speed and the smoothness of their trajectory parallel to the virtual wall and subjective measures of utility and comfort employing Likert-type rating scales. The Recurring Continuous (RC) commands that exploit the phenomena of apparent motion are most effective in generating efficient routes and fast travel, and are most preferred. Finally, the optimal tactile language (RC) is compared with audio guidance using verbal instructions to investigate effectiveness in delivering navigation commands. The results show that haptic guidance leads to better performance as well as lower cognitive workload compared to auditory feedback. This research demonstrates that a head-mounted sensory augmentation interface can enhance spatial awareness in low visibility environments and could help firefighters’ navigation by providing them with supplementary sensory information.

[1]  Emil M. Petriu,et al.  Behavior-based neuro-fuzzy controller for mobile robot navigation , 2003, IEEE Trans. Instrum. Meas..

[2]  Robert W. Lindeman,et al.  Empirical studies for effective near-field haptics in virtual environments , 2003, IEEE Virtual Reality, 2003. Proceedings..

[3]  R. Gassert,et al.  Augmented white cane with multimodal haptic feedback , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[4]  Brian Y. Lattimer,et al.  Evaluation of Navigation Sensors in Fire Smoke Environments , 2014 .

[5]  Lynette A. Jones,et al.  Tactile Vocabulary for Tactile Displays , 2007, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07).

[6]  Margarita Anastassova,et al.  Haptic patterns and older adults: To repeat or not to repeat? , 2015, 2015 IEEE World Haptics Conference (WHC).

[7]  H. Berendse,et al.  The effect of rhythmic somatosensory cueing on gait in patients with Parkinson's disease , 2006, Journal of the Neurological Sciences.

[8]  S Weinstein,et al.  Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality , 1968 .

[9]  Anderson Maciel,et al.  Tactile Interface for Navigation in Underground Mines , 2014, 2014 XVI Symposium on Virtual and Augmented Reality.

[10]  Ian Oakley,et al.  Determining the Feasibility of Forearm Mounted Vibrotactile Displays , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[11]  Koji Tsukada,et al.  ActiveBelt: Belt-Type Wearable Tactile Display for Directional Navigation , 2004, UbiComp.

[12]  P. Bach-y-Rita,et al.  Sensory substitution and the human–machine interface , 2003, Trends in Cognitive Sciences.

[13]  A. Asuncion,et al.  UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .

[14]  P J Blamey,et al.  A comparison of Tactaid II+ and Tactaid 7 use by adults with a profound hearing impairment. , 1999, Ear and hearing.

[15]  Thomas Hulin,et al.  Evaluation of a vibrotactile feedback device for spatial guidance , 2011, 2011 IEEE World Haptics Conference.

[16]  Gerard Jounghyun Kim,et al.  Designing of 2D Illusory Tactile Feedback for Hand-Held Tablets , 2015, INTERACT.

[17]  G H MOWBRAY,et al.  Sensitivity of the skin to changes in rate of intermittent mechanical stimuli. , 1957, Science.

[18]  H. Abdi The Bonferonni and Šidák Corrections for Multiple Comparisons , 2006 .

[19]  Lynette A. Jones,et al.  Application of Psychophysical Techniques to Haptic Research , 2013, IEEE Transactions on Haptics.

[20]  Michael R. Ibbotson,et al.  The role of visual deprivation and experience on the performance of sensory substitution devices , 2015, Brain Research.

[21]  Niels Henze,et al.  Evaluation of Continuous Direction Encoding with Tactile Belts , 2008, HAID.

[22]  Hong Z. Tan,et al.  When visual transients impair tactile change detection: A novel case of crossmodal change blindness? , 2006, Neuroscience Letters.

[23]  Ryan M. Traylor,et al.  A Haptic Back Display for Attentional and Directional Cueing , 2003 .

[24]  Robert W. Lindeman,et al.  The design and deployment of a wearable vibrotactile feedback system , 2004, Eighth International Symposium on Wearable Computers.

[25]  Steven M. LaValle,et al.  Mapping and Pursuit-Evasion Strategies For a Simple Wall-Following Robot , 2011, IEEE Transactions on Robotics.

[26]  Mathew H. Evans,et al.  Sensory Augmentation with Distal Touch: The Tactile Helmet Project , 2013, Living Machines.

[27]  J. Kirman,et al.  Tactile apparent movement: The effects of interstimulus onset interval and stimulus duration , 1974 .

[28]  S. Bolanowski,et al.  A four-channel analysis of the tactile sensitivity of the fingertip: frequency selectivity, spatial summation, and temporal summation , 2002, Somatosensory & motor research.

[29]  J. Gibson Observations on active touch. , 1962, Psychological review.

[30]  Lynette A Jones,et al.  Vibrotactile Pattern Recognition on the Arm and Back , 2009, Perception.

[31]  Hui Tang,et al.  An oral tactile interface for blind navigation , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[32]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[33]  Gerard Jounghyun Kim,et al.  Funneling and saltation effects for tactile interaction with virtual objects , 2012, CHI.

[34]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[35]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[36]  R W Cholewiak,et al.  The generation of vibrotactile patterns on a linear array: Influences of body site, time, and presentation mode , 2000, Perception & psychophysics.

[37]  Laurence R Harris,et al.  Visuotactile apparent motion , 2008, Perception & psychophysics.

[38]  Richard D. Gilson,et al.  Remote Tactile Displays for Future Soldiers , 2007 .

[39]  S. Hart,et al.  Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research , 1988 .

[40]  Yuichi Itoh,et al.  Determining appropriate parameters to elicit linear and circular apparent motion using vibrotactile cues , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[41]  Stephen A. Brewster,et al.  Mobile Multi-actuator Tactile Displays , 2007, HAID.

[42]  Ehud Ahissar,et al.  What Is It Like to Be a Rat? Sensory Augmentation Study , 2010, EuroHaptics.

[43]  Lucy E. Dunne,et al.  Tactile distance feedback for firefighters: design and preliminary evaluation of a sensory augmentation glove , 2013, AH.

[44]  Lynette A. Jones,et al.  Tactile Displays: Guidance for Their Design and Application , 2008, Hum. Factors.

[45]  C M Reed,et al.  Research on the Tadoma method of speech communication. , 1983, The Journal of the Acoustical Society of America.

[46]  Gunnar Stevens,et al.  Handy navigation in ever-changing spaces: an ethnographic study of firefighting practices , 2008, DIS '08.

[47]  J Dargahi,et al.  Human tactile perception as a standard for artificial tactile sensing—a review , 2004, The international journal of medical robotics + computer assisted surgery : MRCAS.

[48]  Simon X. Yang,et al.  A Neuro-fuzzy Controller for Reactive Navigation of a Behaviour-Based Mobile Robot , 2005, ISNN.

[49]  Yuichiro Kume,et al.  Towards Effective Information Display Using Vibrotactile Apparent Motion , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[50]  Insop Song,et al.  Soft-Computing-Based Embedded Design of an Intelligent Wall/Lane-Following Vehicle , 2008, IEEE/ASME Transactions on Mechatronics.

[51]  H. Schiffman Sensation and Perception: An Integrated Approach , 1976 .

[52]  J C Craig,et al.  Some factors affecting tactile pattern recognition. , 1983, The International journal of neuroscience.

[53]  Peter König,et al.  Sensory Augmentation for the Blind , 2012, Front. Hum. Neurosci..

[54]  R. Braunstingl,et al.  A wall following robot with a fuzzy logic controller optimized by a genetic algorithm , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[55]  Hong Z. Tan,et al.  Tactor Localization at the Wrist , 2008, EuroHaptics.

[56]  Markus Straub,et al.  Distance encoding in vibro-tactile guidance cues , 2009, 2009 6th Annual International Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous.

[57]  Nikolaos G. Bourbakis,et al.  Towards a 2D tactile vocabulary for navigation of blind and visually impaired , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[58]  A. El Saddik,et al.  A pilot study on simulating continuous sensation with two vibrating motors , 2008, 2008 IEEE International Workshop on Haptic Audio visual Environments and Games.

[59]  J.B.F. van Erp,et al.  Guidelines for the use of vibro-tactile displays in human computer interaction , 2002 .

[60]  Tirtharaj Dash,et al.  Neural network approach to control wall-following robot navigation , 2014, 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies.

[61]  Atsuo Murata,et al.  Proposal of automotive 8-directional warning system that makes use of tactile apparent movement , 2012, 2012 Proceedings of SICE Annual Conference (SICE).

[62]  Margarita Anastassova,et al.  What's around me? Multi-actuator haptic feedback on the wrist , 2013, 2013 World Haptics Conference (WHC).

[63]  Verrillo Rt,et al.  Enhancement of vibrotactile sensation magnitude and predictions from the duplex model of mechanoreception. , 1977 .

[64]  Frank A. Saunders,et al.  A wearable tactile sensory aid for profoundly deaf children , 2005, Journal of Medical Systems.

[65]  Roberto Manduchi,et al.  Vibrotactile Guidance for Wayfinding of Blind Walkers , 2015, IEEE Transactions on Haptics.

[66]  Hendrik A. H. C. van Veen,et al.  Waypoint navigation with a vibrotactile waist belt , 2005, TAP.

[67]  C. Sherrick A scale for rate of tactual vibration. , 1985, The Journal of the Acoustical Society of America.

[68]  James C. Bliss,et al.  Optical-to-Tactile Image Conversion for the Blind , 1970 .

[69]  Kevin Warwick,et al.  Sensory Perception through an Electro-tactile Stimulus Array on the Tongue , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[70]  R. Likert “Technique for the Measurement of Attitudes, A” , 2022, The SAGE Encyclopedia of Research Design.

[71]  K.A. Kaczmarek,et al.  Pattern identification as a function of stimulation on a fingertip-scanned electrotactile display , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[72]  Akio Yamamoto,et al.  Virtual environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[73]  Peter B. Shull,et al.  Haptic wearables as sensory replacement, sensory augmentation and trainer – a review , 2015, Journal of NeuroEngineering and Rehabilitation.

[74]  Hans-Werner Gellersen,et al.  Location and Navigation Support for Emergency Responders: A Survey , 2010, IEEE Pervasive Computing.

[75]  Alexander S Aruin,et al.  Auxiliary Sensory Cues Improve Automatic Postural Responses in Individuals With Diabetic Neuropathy , 2011, Neurorehabilitation and neural repair.

[76]  Panos Markopoulos,et al.  GentleGuide: An Exploration of Haptic Output for Indoors Pedestrian Guidance , 2003, Mobile HCI.

[77]  David R. Morse,et al.  AudioGPS: Spatial Audio Navigation with a Minimal Attention Interface , 2002, Personal and Ubiquitous Computing.

[78]  Lynette A. Jones,et al.  Tactile display and vibrotactile pattern recognition on the torso , 2006, Adv. Robotics.

[79]  Jun Rekimoto,et al.  Ambient touch: designing tactile interfaces for handheld devices , 2002, UIST '02.

[80]  Yongji Wang,et al.  Mobile robots' modular navigation controller using spiking neural networks , 2014, Neurocomputing.

[81]  Tirtharaj Dash,et al.  Automatic navigation of wall following mobile robot using Adaptive Resonance Theory of Type-1 , 2015, BICA 2015.

[82]  Michael Beigl,et al.  ProximityHat: a head-worn system for subtle sensory augmentation with tactile stimulation , 2015, SEMWEB.

[83]  Ramiro Velazquez,et al.  Preliminary evaluation of podotactile feedback in sighted and blind users , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[84]  Lindsay Kleeman,et al.  Sonar Sensing , 2008, Springer Handbook of Robotics.

[85]  S J Bolanowski,et al.  Vibrotactile frequency for encoding a speech parameter. , 1977, The Journal of the Acoustical Society of America.

[86]  A H Rupert An instrumentation solution for reducing spatial disorientation mishaps. , 2000, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[87]  Alois Ferscha,et al.  Raising Awareness about Space via Vibro-Tactile Notifications , 2008, EuroSSC.

[88]  Dirman Hanafi,et al.  Wall Follower Autonomous Robot Development Applying Fuzzy Incremental Controller , 2013 .

[89]  D. S. Alles,et al.  Information Transmission by Phantom Sensations , 1970 .

[90]  Shin'ichi Yuta,et al.  Following a wall by an autonomous mobile robot with a sonar-ring , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[91]  G. Békésy,et al.  Funneling in the Nervous System and its Role in Loudness and Sensation Intensity on the Skin , 1958 .

[92]  Lorna M. Brown,et al.  A first investigation into the effectiveness of Tactons , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[93]  Susanne Boll,et al.  Exploring distance encodings with a tactile display to convey turn by turn information in automobiles , 2010, NordiCHI.

[94]  B H Brown,et al.  Information from time-varying vibrotactile stimuli. , 1997, The Journal of the Acoustical Society of America.

[95]  Alex Pentland,et al.  Tactual displays for wearable computing , 2005, Personal Technologies.

[96]  Steve Mann,et al.  Blind navigation with a wearable range camera and vibrotactile helmet , 2011, ACM Multimedia.

[97]  J.B.F. van Erp,et al.  Providing directional information with tactile torso displays , 2003 .

[98]  Niels Henze,et al.  Tactile wayfinder: a non-visual support system for wayfinding , 2008, NordiCHI.

[99]  G. Gescheider The Classical Psychophysical.Methods , 2013 .

[100]  Ove Franzén,et al.  Vibrotactile frequency discrimination , 1975 .

[101]  Ronald Raymond Riso,et al.  Sensory Feedback using Electrical Stimulation of the Tactile Sense , 2018 .

[102]  Nigel Steele,et al.  Neuro-Fuzzy Control for Basic Mobile Robot Behaviours , 2001 .

[103]  Georg v. Békésy,et al.  Similarities between hearing and skin sensations. , 1959 .

[104]  Sabine U. König,et al.  The experience of new sensorimotor contingencies by sensory augmentation , 2014, Consciousness and Cognition.

[105]  BENJAMIN WHITE,et al.  Vision Substitution by Tactile Image Projection , 1969, Nature.

[106]  G. D. Goff Differential discrimination of frequency of cutaneous mechanical vibration. , 1967, Journal of experimental psychology.

[107]  R W Cholewiak,et al.  Spatial factors in the perceived intensity of vibrotactile patterns. , 1979, Sensory processes.

[108]  J. Kirman,et al.  The effect of number of stimulators on the optimal interstimulus onset interval in tactile apparent movement , 1975 .

[109]  Masaya Hirashima,et al.  The “Cutaneous Rabbit” Hopping out of the Body , 2010, The Journal of Neuroscience.

[110]  Jerome Pasquero Survey on Communication through Touch , 2006 .

[111]  Jing-Sin Liu,et al.  Wall following and human detection for mobile robot surveillance in indoor environment , 2014, 2014 IEEE International Conference on Mechatronics and Automation.

[112]  Thad Starner,et al.  Touchfire: Towards a glove-mounted tactile display for rendering temperature readings for firefighters , 2010, International Symposium on Wearable Computers (ISWC) 2010.

[113]  S. Bolanowski,et al.  Hairy skin: psychophysical channels and their physiological substrates. , 1994, Somatosensory & motor research.

[114]  V. Balasubramanian,et al.  Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind , 2008, 2008 IEEE International Workshop on Haptic Audio visual Environments and Games.

[115]  Conrad Wall,et al.  Balance prostheses for postural control. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[116]  Raúl Marín,et al.  Multi-Sensor Person Following in Low-Visibility Scenarios , 2010, Sensors.

[117]  J. Cuevas The Somatic Nervous System , 2007 .

[118]  Lorna M. Brown,et al.  Tactons: Structured Tactile Messages for Non-Visual Information Display , 2004, AUIC.

[119]  S. Lederman,et al.  TACTUAL PERCEPTION , 2003 .

[120]  Carl E. Sherrick,et al.  Apparent haptic movement , 1966 .

[121]  Tzuu-Hseng S. Li,et al.  Autonomous fuzzy parking control of a car-like mobile robot , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[122]  S S Hsiao,et al.  Vibratory adaptation of cutaneous mechanoreceptive afferents. , 2005, Journal of neurophysiology.

[123]  P. König,et al.  Beyond sensory substitution—learning the sixth sense , 2005, Journal of neural engineering.

[124]  F. A. Geldard,et al.  The Cutaneous "Rabbit": A Perceptual Illusion , 1972, Science.

[125]  Ali Israr,et al.  Control space of apparent haptic motion , 2011, 2011 IEEE World Haptics Conference.

[126]  S. Lederman,et al.  Human Hand Function , 2006 .

[127]  Henrik I. Christensen,et al.  Evaluation of rotational and directional vibration patterns on a tactile belt for guiding visually impaired people , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[128]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[129]  M. Rowe,et al.  Vibrotactile frequency discrimination in human hairy skin. , 2006, Journal of neurophysiology.

[130]  Lynette A. Jones,et al.  Surface waves and spatial localization in vibrotactile displays , 2010, 2010 IEEE Haptics Symposium.

[131]  B H Brown,et al.  Vibrotactile and electrotactile perception of time-varying pulse trains. , 1994, The Journal of the Acoustical Society of America.

[132]  Matthias Harders,et al.  Identification of Vibrotactile Patterns Encoding Obstacle Distance Information , 2015, IEEE Transactions on Haptics.

[133]  Roberta L. Klatzky,et al.  Nonvisual Route following with Guidance from a Simple Haptic or Auditory Display , 2007 .

[134]  Simon X. Yang,et al.  Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[135]  Dario Floreano,et al.  Quantifying Information Transfer Through a Head-Attached Vibrotactile Display: Principles for Design and Control , 2012, IEEE Transactions on Biomedical Engineering.

[136]  D J Newman,et al.  A tactile display for international space station (ISS) extravehicular activity (EVA). , 2000, Aviation, space, and environmental medicine.

[137]  Michael Rohs,et al.  HapticHead: 3D Guidance and Target Acquisition through a Vibrotactile Grid , 2016, CHI Extended Abstracts.

[138]  J. Collins,et al.  Vibrating insoles and balance control in elderly people , 2003, The Lancet.

[139]  W.J. Tompkins,et al.  Electrotactile and vibrotactile displays for sensory substitution systems , 1991, IEEE Transactions on Biomedical Engineering.

[140]  Susanne Boll,et al.  Feel your route: a tactile display for car navigation , 2011, IEEE Pervasive Computing.

[141]  Abdulmotaleb El Saddik,et al.  Spatial resolution of vibrotactile perception on the human forearm when exploiting funneling illusion , 2009, 2009 IEEE International Workshop on Haptic Audio visual Environments and Games.

[142]  Howard M. Schwartz,et al.  Genetic based fuzzy logic controller for a wall-following mobile robot , 2009, 2009 American Control Conference.

[143]  Tom Froese,et al.  The Enactive Torch: A New Tool for the Science of Perception , 2012, IEEE Transactions on Haptics.

[144]  A. A. Collins,et al.  Vibrotactile localization on the arm: Effects of place, space, and age , 2003, Perception & psychophysics.

[145]  Nikolaos G. Tsagarakis,et al.  Mechano thermo and proprioceptor feedback for integrated haptic feedback , 1997, Proceedings of International Conference on Robotics and Automation.

[146]  M. Rowe,et al.  Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding. , 1990, The Journal of physiology.

[147]  James R. Marston,et al.  Personal Guidance System for People with Visual Impairment: A Comparison of Spatial Displays for Route Guidance , 2005, Journal of visual impairment & blindness.

[148]  Tirtharaj Dash,et al.  Controlling Wall Following Robot Navigation Based on Gravitational Search and Feed Forward Neural Network , 2015, PerMIn '15.

[149]  Frank A. Geldard,et al.  Sensory saltation : metastability in the perceptual world , 1977 .

[150]  S. Neusser,et al.  Evaluation of fuzzy and neural vehicle control , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.

[151]  Lorna M. Brown,et al.  Tactons : structured vibrotactile messages for non-visual information display , 2007 .

[152]  J. V. Erp,et al.  Vibrotactile in-vehicle navigation system , 2004 .

[153]  Gianluca Antonelli,et al.  A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking , 2007, IEEE Transactions on Fuzzy Systems.

[154]  Guilherme A. Barreto,et al.  Short-term memory mechanisms in neural network learning of robot navigation tasks: A case study , 2009, 2009 6th Latin American Robotics Symposium (LARS 2009).

[155]  Jan B. F. van Erp,et al.  Tactile Navigation Display , 2000, Haptic Human-Computer Interaction.

[156]  Rainer Stiefelhagen,et al.  Cognitive Evaluation of Haptic and Audio Feedback in Short Range Navigation Tasks , 2014, ICCHP.

[157]  David A. Ross,et al.  Wearable interfaces for orientation and wayfinding , 2000, Assets '00.

[158]  R. Cholewiak,et al.  Vibrotactile localization on the abdomen: Effects of place and space , 2004, Perception & psychophysics.

[159]  H. Noma,et al.  Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors , 2004 .

[160]  Michitaka Hirose,et al.  Virtual leading blocks for the deaf-blind: a real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space , 2004, IEEE Virtual Reality 2004.

[161]  Thomas K. Ferris,et al.  An Analysis of Static, Dynamic, and Saltatory Vibrotactile Stimuli to Inform the Design of Efficient Haptic Communication Systems , 2012 .

[162]  Yon Visell,et al.  Tactile sensory substitution: Models for enaction in HCI , 2009, Interact. Comput..

[163]  Stephen Grossberg,et al.  Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world , 2013, Neural Networks.

[164]  Shraga Shoval,et al.  Auditory guidance with the Navbelt-a computerized travel aid for the blind , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[165]  Seungmoon Choi,et al.  Vibrotactile Display: Perception, Technology, and Applications , 2013, Proceedings of the IEEE.

[166]  J C Craig,et al.  Vibrotactile pattern recognition and discrimination at several body sites , 1984, Perception & psychophysics.

[167]  Carl E. Sherrick,et al.  Bilateral apparent haptic movement , 1968 .

[168]  J. Allum,et al.  Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects. , 2009, Gait & posture.

[169]  Scott A. Wdter The Sonar Ring: Obstacle Detection for a Mobile Robot , 1987 .

[170]  Conrad Wall,et al.  Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt , 2001, IEEE Transactions on Biomedical Engineering.

[171]  Andreas Riener,et al.  "Personal Radar": a self-governed support system to enhance environmental perception , 2012, BCS HCI.

[172]  F A Geldard,et al.  The mutability of time and space on the skin. , 1983, The Journal of the Acoustical Society of America.

[173]  Abdulmotaleb El-Saddik,et al.  Continuous tactile perception for vibrotactile displays , 2009, 2009 IEEE International Workshop on Robotic and Sensors Environments.

[174]  Mel Slater,et al.  Touching the void: exploring virtual objects through a vibrotactile glove , 2012 .

[175]  Masatoshi Ishikawa,et al.  Augmenting spatial awareness with Haptic Radar , 2006, 2006 10th IEEE International Symposium on Wearable Computers.

[176]  J. V. Van Erp,et al.  Presenting directions with a vibrotactile torso display , 2005, Ergonomics.

[177]  Lynette A. Jones,et al.  Localization and Pattern Recognition with Tactile Displays , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[178]  F. Horak,et al.  Vibrotactile Biofeedback Improves Tandem Gait in Patients with Unilateral Vestibular Loss , 2009, Annals of the New York Academy of Sciences.

[179]  Georg v. Békésy,et al.  Synchronism of Neural Discharges and Their Demultiplication in Pitch Perception on the Skin and in Hearing , 1959 .

[180]  Hong Z. Tan,et al.  Development of a wearable haptic display for situation awareness in altered-gravity environment: some initial findings , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[181]  Hong Z. Tan,et al.  Tactile change detection , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[182]  Thomas K. Ferris,et al.  Evaluation of Vibrotactile Warning Systems for Supporting Hazard Awareness and Safety of Distracted Pedestrians , 2016 .