HERschel KEY PROGRAM HERITAGE: A FAR-INFRARED SOURCE CATALOG FOR THE MAGELLANIC CLOUDS

Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMCʼs smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high (“probable”) and moderate (“possible”) likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.

[1]  Joana M. Oliveira,et al.  SPITZER VIEW OF MASSIVE STAR FORMATION IN THE TIDALLY STRIPPED MAGELLANIC BRIDGE , 2014, 1403.0618.

[2]  R. Indebetouw,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). III. YOUNG STELLAR OBJECTS , 2013 .

[3]  Linda J. Smith,et al.  THE HERschel INVENTORY OF THE AGENTS OF GALAXY EVOLUTION IN THE MAGELLANIC CLOUDS, A HERSCHEL OPEN TIME KEY PROGRAM , 2013 .

[4]  N. Tothill,et al.  Active galactic nuclei behind the SMC selected from radio and X-ray surveys , 2013, 1308.1218.

[5]  M. Wolff,et al.  THREE-DIMENSIONAL RADIATION TRANSFER IN YOUNG STELLAR OBJECTS , 2013, 1307.0561.

[6]  C. Kochanek,et al.  THE MAGELLANIC QUASARS SURVEY. III. SPECTROSCOPIC CONFIRMATION OF 758 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS , 2013, 1305.6927.

[7]  T. Henning,et al.  Dust input from AGB stars in the Large Magellanic Cloud , 2013, 1305.3521.

[8]  N. Walborn,et al.  THE TOP 10 SPITZER YOUNG STELLAR OBJECTS IN 30 DORADUS , 2013 .

[9]  M. Sauvage,et al.  The thermal dust emission in N158–N159–N160 (LMC) star-forming complex mapped by Spitzer, Herschel and LABOCA , 2013, 1302.2825.

[10]  F. Piacentini,et al.  An analysis of star formation with Herschel in the Hi-GAL survey - I. The science demonstration phase fields , 2012, 1211.3747.

[11]  J. Simon,et al.  Early-stage young stellar objects in the Small Magellanic Cloud , 2012, 1210.5193.

[12]  M. Meixner,et al.  Identifying young stellar objects in nine Large Magellanic Cloud star-forming regions , 2012 .

[13]  S. Srinivasan,et al.  THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES , 2012, 1205.0280.

[14]  T. Wong,et al.  THE LIFE AND DEATH OF DENSE MOLECULAR CLUMPS IN THE LARGE MAGELLANIC CLOUD , 2012, 1203.4505.

[15]  P. Panuzzo,et al.  Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud , 2011, 1110.1260.

[16]  A. Subramaniam,et al.  THE THREE-DIMENSIONAL STRUCTURE OF THE SMALL MAGELLANIC CLOUD , 2011, 1109.3980.

[17]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[18]  Linda J. Smith,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW , 2011, 1107.4313.

[19]  M. Sauvage,et al.  Herschel Detects a Massive Dust Reservoir in Supernova 1987A , 2011, Science.

[20]  R. Indebetouw,et al.  SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). II. COOL EVOLVED STARS , 2011, 1106.5026.

[21]  A. Ginsburg,et al.  Characterizing precursors to stellar clusters with Herschel , 2011, 1101.4654.

[22]  Linda J. Smith,et al.  A PANCHROMATIC VIEW OF NGC 602: TIME-RESOLVED STAR FORMATION WITH THE HUBBLE AND SPITZER SPACE TELESCOPES , 2010, 1012.3406.

[23]  O. Krause,et al.  MESS (Mass-loss of Evolved StarS), a Herschel key program , 2010, 1012.2701.

[24]  S. Maddox,et al.  Herschel-ATLAS: First data release of the Science Demonstration Phase source catalogues , 2010, 1010.5787.

[25]  R. Indebetouw,et al.  YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206 , 2010 .

[26]  B. Alcott Reply to Schneider et al., JCLEPRO 18 (6), 511–518 , 2010 .

[27]  R. Gruendl,et al.  SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H ii COMPLEXES. II. N 159 , 2010, 1007.5326.

[28]  Bangalore,et al.  An estimate of the structural parameters of the Large Magellanic Cloud using red clump stars , 2010, 1006.4214.

[29]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[30]  M. Sauvage,et al.  Cold dust in three massive evolved stars in the LMC , 2010, 1005.5167.

[31]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[32]  M. Sauvage,et al.  Dust in the bright supernova remnant N49 in the LMC , 2010, 1005.2787.

[33]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[34]  Joana M. Oliveira,et al.  The youngest massive protostars in the Large Magellanic Cloud , 2010, 1005.2592.

[35]  F. Piacentini,et al.  A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey , 2010, 1005.1783.

[36]  M. Sauvage,et al.  Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory , 2010, 1005.1615.

[37]  Joana M. Oliveira,et al.  The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud , 2010, 1004.1142.

[38]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[39]  Joana M. Oliveira,et al.  ICE CHEMISTRY IN EMBEDDED YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD , 2009, 0911.0532.

[40]  Joana M. Oliveira,et al.  A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. I. THE LARGE MAGELLANIC CLOUD , 2009, 0910.3339.

[41]  R. Gruendl,et al.  HIGH- AND INTERMEDIATE-MASS YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD , 2009, 0908.0347.

[42]  R. Gruendl,et al.  THE EVOLUTION OF MASSIVE YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD. I. IDENTIFICATION AND SPECTRAL CLASSIFICATION , 2009, 0904.1825.

[43]  C. Kochanek,et al.  DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS , 2009, 0904.1740.

[44]  R. Indebetouw,et al.  The Spitzer/GLIMPSE Surveys: A New View of the Milky Way , 2009 .

[45]  C. Leitherer,et al.  THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm , 2009, 0903.1661.

[46]  R. Gruendl,et al.  SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H ii COMPLEX N 44 , 2009, 0901.1328.

[47]  A. Bolatto,et al.  THE DUST-TO-GAS RATIO IN THE SMALL MAGELLANIC CLOUD TAIL , 2008, 0811.2789.

[48]  R. Indebetouw,et al.  A CATALOG OF EXTENDED GREEN OBJECTS IN THE GLIMPSE SURVEY: A NEW SAMPLE OF MASSIVE YOUNG STELLAR OBJECT OUTFLOW CANDIDATES , 2008, 0810.0530.

[49]  University College London,et al.  Discovery of Extreme Carbon Stars in the Large Magellanic Cloud , 2008, 0809.5107.

[50]  A. Subramaniam,et al.  Depth estimation of the Large and Small Magellanic Clouds , 2008, 0809.4362.

[51]  A. Ginsburg,et al.  The optically bright post-AGB population of the LMC , 2008, Proceedings of the International Astronomical Union.

[52]  H. Kaneda,et al.  AKARI Near-Infrared Spectroscopy: Detection of H2O and CO2 Ices toward Young Stellar Objects in the Large Magellanic Cloud , 2008, Proceedings of the International Astronomical Union.

[53]  Wolfgang Gieren,et al.  THE ARAUCARIA PROJECT: THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM NEAR-INFRARED PHOTOMETRY OF RR LYRAE VARIABLES , 2008, 0910.3885.

[54]  Linda J. Smith,et al.  SPITZER SAGE SURVEY OF THE LARGE MAGELLANIC CLOUD. III. STAR FORMATION AND ∼1000 NEW CANDIDATE YOUNG STELLAR OBJECTS , 2008 .

[55]  S. Kanbur,et al.  The Period-Luminosity Relation for the Large Magellanic Cloud Cepheids Derived from Spitzer Archival Data , 2008, 0801.1501.

[56]  C. Leitherer,et al.  SPITZER SAGE OBSERVATIONS OF LARGE MAGELLANIC CLOUD PLANETARY NEBULAE , 2007, 0710.5938.

[57]  J. Simon,et al.  The Spitzer Survey of the Small Magellanic Cloud: Discovery of Embedded Protostars in the H II Region NGC 346 , 2007, 0707.3998.

[58]  L. Mattsson,et al.  Mass loss evolution and the formation of detached shells around TP-AGB stars , 2007, 0705.2232.

[59]  J. Simon,et al.  The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wave Bands , 2006, astro-ph/0608561.

[60]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[61]  H. Gail,et al.  Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium , 2006 .

[62]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[63]  D. Padgett,et al.  MIPSGAL: A Survey of the Inner Galactic Plane at 24 and 70 μm , 2005 .

[64]  Q. Parker,et al.  A New Population of Planetary Nebulae Discovered in the Large Magellanic Cloud , 2005, 1308.5484.

[65]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[66]  K. Wood,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence , 2003, astro-ph/0309007.

[67]  L. Staveley-Smith,et al.  High-resolution H I observations of the Western Magellanic Bridge , 2002, astro-ph/0210615.

[68]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[69]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[70]  Emiliano Diolaiti,et al.  StarFinder: an IDL GUI-based code to analyze crowded fields with isoplanatic correcting PSF fitting , 2000, Astronomical Telescopes and Instrumentation.

[71]  Neal J. Evans Physical conditions in regions of star formation , 1999 .

[72]  H. J. Habing,et al.  Circumstellar envelopes and Asymptotic Giant Branch stars , 1996 .

[73]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[74]  E. Dwek,et al.  Large-scale Galactic dust morphology and physical conditions from IRAS observations , 1987 .

[75]  I. Iben,et al.  Asymptotic Giant Branch Evolution and Beyond , 1983 .