Clique Numbers of Random Subgraphs of Some Distance Graphs

We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows: $$V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} $$V(n,r)={x=(x1,,x2...xn):xi∈{0,1},x1,+x2+...+xn=r},E(n,r,s)={{x,y}:(x,y)=s} where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.

[1]  A. S. Gusev,et al.  New upper bound for the chromatic number of a random subgraph of a distance graph , 2015, Mathematical Notes.

[2]  A. Raigorodskii Coloring Distance Graphs and Graphs of Diameters , 2013 .

[3]  Андрей Михайлович Райгородский,et al.  Числа независимости и хроматические числа случайных подграфов некоторых дистанционных графов@@@The independence numbers and the chromatic numbers of random subgraphs of some distance graphs , 2015 .

[4]  Andrey B. Kupavskii On random subgraphs of Kneser and Schrijver graphs , 2016, J. Comb. Theory, Ser. A.

[5]  A. Raigorodskii,et al.  Independence numbers and chromatic numbers of random subgraphs in some sequences of graphs , 2014 .

[6]  Béla Bollobás,et al.  On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.

[7]  M. Pyaderkin,et al.  Independence numbers of random subgraphs of distance graphs , 2016, Mathematical Notes.

[8]  Andrei M. Raigorodskii,et al.  Combinatorial Geometry and Coding Theory , 2016, Fundam. Informaticae.

[9]  M. Pyaderkin Independence numbers of random subgraphs of distance graphs , 2016 .

[10]  On random subgraphs of Kneser graphs and their generalizations , 2016 .

[11]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[12]  M. M. Pyaderkin On the stability of some Erdős-Ko-Rado type results , 2017, Discret. Math..

[13]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[14]  A. S. Gusev New upper bound for the chromatic number of a random subgraph of a distance graph , 2015 .