Off-Axis Paths in Spherical Mirror Interferometers

When a spherical mirror interferometer is illuminated by an off-axis ray of light, the repeated reflections cause the ray to trace a path which lies on the surface of a hyperboloid, with the points of reflection on the mirrors on ellipses. Under special conditions, these ellipses may become circles, with the points of reflection displaced by an angle 2θ after every round trip. When 2νθ = 2μπ, ν and μ being integers, the rays retrace their paths. These ray paths give rise to additional resonances which were observed. Pictures of the points of reflection are reproduced. The theory is in good agreement with the experimental observations. In laser amplifiers these ray paths enable one to obtain long effective path lengths in the active medium which may be contained in a thin annular cylindrical or hyperboloidal shell.