Local Causal States and Discrete Coherent Structures

Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the local causal states, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.

[1]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[2]  P. Attard Optimising Principle for Non-Equilibrium Phase Transitions and Pattern Formation with Results for Heat Convection , 2012, 1208.5105.

[3]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[4]  Henry S. Greenside,et al.  Pattern Formation and Dynamics in Nonequilibrium Systems , 2004 .

[5]  Lord Rayleigh,et al.  LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side , 1916 .

[6]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[7]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[8]  N. Boccara,et al.  Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  I. Markov Crystal Growth for Beginners:Fundamentals of Nucleation, Crystal Growth and Epitaxy , 2016 .

[10]  C. Shalizi,et al.  Causal architecture, complexity and self-organization in time series and cellular automata , 2001 .

[11]  Juval Portugali,et al.  Information and Self-Organization , 2016, Entropy.

[12]  A. Zippelius,et al.  Dynamics of defects in Rayleigh-Bénard convection , 1981 .

[13]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[14]  James P. Crutchfield,et al.  Unreconstructible at any radius , 1992 .

[15]  James P. Crutchfield,et al.  Discovering Coherent Structures in Nonlinear Spatial Systems , 1992 .

[16]  James P. Crutchfield,et al.  Information Flows? A Critique of Transfer Entropies , 2015, Physical review letters.

[17]  John M Beggs,et al.  Partial information decomposition as a spatiotemporal filter. , 2011, Chaos.

[18]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[19]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[20]  J. Glenn Brookshear,et al.  Theory of Computation: Formal Languages, Automata, and Complexity , 1989 .

[21]  James P. Crutchfield,et al.  Signatures of Infinity: Nonergodicity and Resource Scaling in Prediction, Complexity, and Learning , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Arshad Kudrolli,et al.  Superlattice patterns in surface waves , 1998, chao-dyn/9803016.

[23]  Michael R Allshouse,et al.  Lagrangian based methods for coherent structure detection. , 2015, Chaos.

[24]  James P. Crutchfield,et al.  Equations of Motion from a Data Series , 1987, Complex Syst..

[25]  James P. Sethna Order parameters, broken symmetry, and topology , 1992 .

[26]  Eshel Ben-Jacob,et al.  Complex bacterial patterns , 1995, Nature.

[27]  中谷 宇吉郎,et al.  Snow crystals, natural and artificial , 1954 .

[28]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .

[29]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[30]  R. Cammack Splitting molecular hydrogen , 1995, Nature.

[31]  James P. Crutchfield,et al.  Bayesian Structural Inference for Hidden Processes , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  George Haller,et al.  Inertial Particle Dynamics in a Hurricane , 2009 .

[33]  James P. Crutchfield,et al.  Time resolution dependence of information measures for spiking neurons: scaling and universality , 2015, Front. Comput. Neurosci..

[34]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[35]  Prabhat,et al.  Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets , 2016, ArXiv.

[36]  James P. Crutchfield,et al.  Nearly Maximally Predictive Features and Their Dimensions , 2017, Physical review. E.

[37]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[38]  Cosma Rohilla Shalizi Optimal Nonlinear Prediction of Random Fields on Networks , 2003, DMCS.

[39]  W. Heisenberg,et al.  Nonlinear problems in physics , 1967 .

[40]  James P. Crutchfield,et al.  Informational and Causal Architecture of Continuous-time Renewal Processes , 2016, 1611.01099.

[41]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction , 2018, Chaos.

[42]  Kari Eloranta,et al.  The dynamics of defect ensembles in one-dimensional cellular automata , 1994 .

[43]  I. Watterson,et al.  Tropical Cyclone-like Vortices in a Limited Area Model: Comparison with Observed Climatology , 1997 .

[44]  P. Anderson More is different. , 1972, Science.

[45]  M. Botur,et al.  Lagrangian coherent structures , 2009 .

[46]  Albert Y. Zomaya,et al.  Information modification and particle collisions in distributed computation. , 2010, Chaos.

[47]  Kerry A. Emanuel,et al.  The Theory of Hurricanes , 1991 .

[48]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[49]  Gerik Scheuermann,et al.  Towards Automatic Feature-based Visualization , 2010, Scientific Visualization: Advanced Concepts.

[50]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[51]  Jeffrey L. Anderson,et al.  Simulation of Interannual Variability of Tropical Storm Frequency in an Ensemble of GCM Integrations. , 1997 .

[52]  James P. Crutchfield,et al.  Information Anatomy of Stochastic Equilibria , 2014, Entropy.

[53]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[54]  Joseph T. Lizier,et al.  Towards a synergy-based approach to measuring information modification , 2013, 2013 IEEE Symposium on Artificial Life (ALife).

[55]  James P. Crutchfield,et al.  Exact Complexity: The Spectral Decomposition of Intrinsic Computation , 2013, ArXiv.

[56]  M. Lawson Inverse Semigroups, the Theory of Partial Symmetries , 1998 .

[57]  James P. Crutchfield,et al.  Structure and Randomness of Continuous-Time, Discrete-Event Processes , 2017, ArXiv.

[58]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[59]  Mohammad Farazmand,et al.  A critical comparison of Lagrangian methods for coherent structure detection. , 2017, Chaos.

[60]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[61]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[62]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[63]  F. Takens,et al.  On the nature of turbulence , 1971 .

[64]  Daniel Ray Upper,et al.  Theory and algorithms for hidden Markov models and generalized hidden Markov models , 1998 .

[65]  Wu-Ki Tung,et al.  Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions in Classical and Quantum Physics , 1985 .

[66]  Michel Coornaert,et al.  Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.

[67]  H. Swinney,et al.  Dynamical instabilities and the transition to chaotic Taylor vortex flow , 1979, Journal of Fluid Mechanics.

[68]  Simone Schweitzer,et al.  Pattern Formation An Introduction To Methods , 2016 .

[69]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[70]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[71]  Gary William Flake,et al.  The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems and Adaptation , 1998 .

[72]  E. Nummelin,et al.  The kink of cellular automaton rule 18 performs a random walk , 1992 .

[73]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  James P. Crutchfield,et al.  Attractor vicinity decay for a cellular automaton. , 1993, Chaos.

[75]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions: I. Geometrically simple waves , 1983 .

[76]  G. Ahlers,et al.  Pattern Formation and Wave-Number Selection by Rayleigh–Bénard Convection in a Cylindrical Container , 1985 .

[77]  Ursula Dresdner,et al.  Computation Finite And Infinite Machines , 2016 .

[78]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[79]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[80]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[81]  James P. Crutchfield,et al.  Low-dimensional chaos in a hydrodynamic system , 1983 .

[82]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[83]  W. Holcombe Algebraic automata theory: Contents , 1982 .

[84]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[85]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[86]  Surendra Byna,et al.  TECA: Petascale Pattern Recognition for Climate Science , 2015, CAIP.

[87]  James P. Crutchfield,et al.  Multivariate Dependence Beyond Shannon Information , 2016, Entropy.

[88]  A. Zhabotinsky A history of chemical oscillations and waves. , 1991, Chaos.

[89]  M. Golubitsky,et al.  The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space , 2002 .

[90]  S. Strogatz,et al.  Singular filaments organize chemical waves in three dimensions , 1983 .

[91]  James P. Crutchfield,et al.  The dreams of theory , 2014 .

[92]  C. Moore,et al.  Automatic filters for the detection of coherent structure in spatiotemporal systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[94]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[95]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[96]  James P. Crutchfield,et al.  Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra , 2017, Chaos.

[97]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[98]  James P. Crutchfield,et al.  Automated pattern detection - An algorithm for constructing optimally synchronizing multi-regular language filters , 2004, Theor. Comput. Sci..

[99]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[100]  Georg M. Goerg,et al.  Mixed LICORS: A Nonparametric Algorithm for Predictive State Reconstruction , 2012, AISTATS.

[101]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[102]  Georg M. Goerg,et al.  LICORS: Light Cone Reconstruction of States for Non-parametric Forecasting of Spatio-Temporal Systems , 2012, 1206.2398.

[103]  Semi-groups and graphs for sofic systems , 1986 .

[104]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[105]  L. Reichl A modern course in statistical physics , 1980 .

[106]  M. Livio Physics: Why symmetry matters , 2012, Nature.