Modulation of Receptor Recycling and Degradation by the Endosomal Kinesin KIF16B

[1]  Russell L. Malmberg,et al.  A standardized kinesin nomenclature , 2004, The Journal of cell biology.

[2]  L. Pelkmans,et al.  Not just a sink: endosomes in control of signal transduction. , 2004, Current opinion in cell biology.

[3]  T. Hasson,et al.  Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. , 2004, Molecular biology of the cell.

[4]  Doron Lancet,et al.  GeneNote: whole genome expression profiles in normal human tissues. , 2003, Comptes rendus biologies.

[5]  Mitsutoshi Setou,et al.  Kinesin superfamily proteins (KIFs) in the mouse transcriptome. , 2003, Genome research.

[6]  H. Stenmark,et al.  STAM and Hrs Are Subunits of a Multivalent Ubiquitin-binding Complex on Early Endosomes* , 2003, The Journal of Biological Chemistry.

[7]  M. Lemmon,et al.  Phosphoinositide Recognition Domains , 2003, Traffic.

[8]  Y. Kalaidzidis,et al.  RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase , 2003, Nature Cell Biology.

[9]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[10]  I. Vernos,et al.  Dynactin is required for bidirectional organelle transport , 2003, The Journal of cell biology.

[11]  Chadwick M. Hales,et al.  Rab11 Family Interacting Protein 2 Associates with Myosin Vb and Regulates Plasma Membrane Recycling* , 2002, The Journal of Biological Chemistry.

[12]  W. Stoorvogel,et al.  Endocytosed Transferrin Receptors Recycle via Distinct Dynamin and Phosphatidylinositol 3-Kinase-dependent Pathways* , 2002, The Journal of Biological Chemistry.

[13]  F. Buchholz,et al.  Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Vale,et al.  Role of Phosphatidylinositol(4,5)bisphosphate Organization in Membrane Transport by the Unc104 Kinesin Motor , 2002, Cell.

[15]  N. Copeland,et al.  Identification of an organelle receptor for myosin-Va , 2002, Nature Cell Biology.

[16]  Daniel Durocher,et al.  The FHA domain , 2002, FEBS letters.

[17]  B. Sönnichsen,et al.  Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes , 2002, Nature Cell Biology.

[18]  L. Goldstein,et al.  Molecular motors: from one motor many tails to one motor many tales. , 2001, Trends in cell biology.

[19]  Jacques Neefjes,et al.  The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors , 2001, Current Biology.

[20]  N. Hirokawa,et al.  KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes , 2001, The Journal of cell biology.

[21]  J. Scholey,et al.  Direct Visualization of the Movement of the Monomeric Axonal Transport Motor UNC-104 along Neuronal Processes in LivingCaenorhabditis elegans , 2001, The Journal of Neuroscience.

[22]  L. Goldstein,et al.  Functional Analysis of Mouse C-Terminal Kinesin Motor KifC2 , 2001, Molecular and Cellular Biology.

[23]  G. Apodaca,et al.  Endocytic Traffic in Polarized Epithelial Cells: Role of the Actin and Microtubule Cytoskeleton , 2001, Traffic.

[24]  Marino Zerial,et al.  Rab proteins as membrane organizers , 2001, Nature Reviews Molecular Cell Biology.

[25]  F. Barr,et al.  The Rab6‐binding kinesin, Rab6‐KIFL, is required for cytokinesis , 2000, The EMBO journal.

[26]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[27]  V. Allan,et al.  Dynactin , 2000, Current Biology.

[28]  T. Schroer,et al.  Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. , 1999, Molecular biology of the cell.

[29]  C. Turck,et al.  Reconstitution of Membrane Transport Powered by a Novel Dimeric Kinesin Motor of the Unc104/Kif1a Family Purified from Dictyostelium , 1999, The Journal of cell biology.

[30]  M. Zerial,et al.  Phosphatidylinositol-3-OH kinases are Rab5 effectors , 1999, Nature Cell Biology.

[31]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins in organelle transport and cell division. , 1998, Current opinion in cell biology.

[32]  B. Goud,et al.  Interaction of a Golgi-associated kinesin-like protein with Rab6. , 1998, Science.

[33]  C. Echeverri,et al.  Overexpression of the Dynamitin (p50) Subunit of the Dynactin Complex Disrupts Dynein-dependent Maintenance of Membrane Organelle Distribution , 1997, The Journal of cell biology.

[34]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[35]  N. Hirokawa,et al.  Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport , 1995, The Journal of cell biology.

[36]  N. Hirokawa,et al.  The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors , 1995, Cell.

[37]  G. Griffiths,et al.  Cytoplasmic dynein-dependent vesicular transport from early to late endosomes [published erratum appears in J Cell Biol 1994 Feb;124(3):397] , 1993, The Journal of cell biology.

[38]  M. Snider,et al.  Role of microtubules in transferrin receptor transport from the cell surface to endosomes and the Golgi complex. , 1993, The Journal of biological chemistry.

[39]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[40]  A. Sorkin,et al.  Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways , 1991, The Journal of cell biology.

[41]  A. Hyman,et al.  Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence , 1991, Journal of Cell Science.

[42]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[43]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[44]  F. Maxfield,et al.  Endocytic recycling , 2004, Nature Reviews Molecular Cell Biology.

[45]  F. Maxfield,et al.  Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. , 2002, Molecular biology of the cell.

[46]  Vladimir Gelfand,et al.  Regulation of molecular motor proteins. , 2001, International review of cytology.

[47]  Anthony A. Hyman,et al.  Rab5 regulates motility of early endosomes on microtubules , 1999, Nature Cell Biology.

[48]  H. Goodson,et al.  Motors and membrane traffic. , 1997, Current opinion in cell biology.

[49]  I. Mellman Endocytosis and molecular sorting. , 1996, Annual review of cell and developmental biology.

[50]  F. Maxfield,et al.  Membrane transport in the endocytic pathway. , 1995, Current opinion in cell biology.

[51]  E. Mandelkow,et al.  Interaction between kinesin, microtubules, and microtubule-associated protein 2. , 1989, Cell motility and the cytoskeleton.