ERAF: A R Package for Regression and Forecasting

We present a package for R language containing a set of tools for regression using ensembles of learning machines and for time series forecasting. The package contains implementations of Bagging and Adaboost for regression, and algorithms for computing mutual information, autocorrelation and false nearest neighbors.

[1]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[2]  Giorgio Valentini,et al.  Ensembles of Learning Machines , 2002, WIRN.

[3]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[4]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[5]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[6]  Richard A. Becker,et al.  Design of the S system for data analysis , 1984, AT&T Technical Journal.

[7]  Maria Marinaro,et al.  Neural Nets WIRN Vietri-01 , 2002, Perspectives in Neural Computing.

[8]  Giorgio Valentini,et al.  Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods , 2004, J. Mach. Learn. Res..

[9]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[10]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[11]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[12]  Chih-Jen Lin,et al.  Training v-Support Vector Regression: Theory and Algorithms , 2002, Neural Computation.

[13]  Harris Drucker,et al.  Improving Regressors using Boosting Techniques , 1997, ICML.

[14]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[15]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[16]  Pedro M. Domingos A Unified Bias-Variance Decomposition for Zero-One and Squared Loss , 2000, AAAI/IAAI.

[17]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[18]  F. Takens Detecting strange attractors in turbulence , 1981 .

[19]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[20]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[21]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[22]  LinChih-Jen,et al.  Training -Support Vector Classifiers: Theory and Algorithms , 2001 .

[23]  Anastasios A. Tsonis,et al.  Singular spectrum analysis , 1996 .