Nanosecond isomers and the evolution of collectivity in stable, even- A Hg isotopes

Isomeric states and associated collective structures have been studied up to high spin in $^{198,200,202}\mathrm{Hg}$ using multinucleon transfer reactions and the Gammasphere array. A coupled rotational band, with possible four-quasiparticle character, is established in $^{198}\mathrm{Hg}$. Sequences built on two-quasiparticle, positive- and negative-parity levels are assigned to $^{202}\mathrm{Hg}$. New isomers in $^{202}\mathrm{Hg}$ with ${I}^{\ensuremath{\pi}}=({7}^{\ensuremath{-}})$ and $({9}^{\ensuremath{-}})$, and ${T}_{1/2}$ = 10.4(4) ns and 1.4(3) ns, respectively, have been identified. A half-life of 1.0(3) ns is established for the ${I}^{\ensuremath{\pi}}={12}^{+}$ state in $^{200}\mathrm{Hg}$. $B(E2)$ values deduced from isomeric transitions in Hg isotopes indicate that, while collectivity near the ground state gradually diminishes from $N$ = 112 to $N$ = 124, it is found to increase for the ${12}^{+}$ and ${9}^{\ensuremath{-}}$ states up to $N$ = 118, followed by a reduction for higher neutron numbers. Calculations using the ultimate cranker code provide insight into the variation of deformation with spin and allow for an understanding of observed band crossings. The evolution of collectivity with spin, and along the isotopic chain, is described.

[1]  Pragati,et al.  Metastable states from multinucleon excitations in Tl202 and Pb203 , 2020 .

[2]  M. Carpenter,et al.  Isomers from intrinsic excitations in Tl200 and Pb201,202 , 2019, Physical Review C.

[3]  M. Carpenter,et al.  Decoupled and semi-decoupled bands in Hg197 and Hg199 , 2019, Physical Review C.

[4]  M. Carpenter,et al.  Structure of odd- A Pt isotopes along the line of stability , 2019, Physical Review C.

[5]  M. Ley,et al.  Lifetime determination in Hg190,192,194,196 via γ−γ fast-timing spectroscopy , 2018, Physical Review C.

[6]  M. Carpenter,et al.  Rotation-aligned isomer and oblate collectivity in Pt 196 , 2015 .

[7]  M. Carpenter,et al.  Isomers and oblate rotation in Pt isotopes: Delineating the limit for collectivity at high spins , 2015 .

[8]  K. Vetter,et al.  High-spin yrast structure of Hg-204 from the decay of a four-hole, 22(+) isomer , 2015 .

[9]  N. Kurz,et al.  Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a 208Pb beam , 2011 .

[10]  C. Chiara,et al.  Nuclear Data Sheets for A = 204 , 2010 .

[11]  S. Heinze,et al.  Two-fermion-four-boson description of {sup 198}Hg within the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended nuclear structure supersymmetry , 2009 .

[12]  D. Cline,et al.  Collective oblate rotation at high spins in neutron-rich 180Hf. , 2008, Physical review letters.

[13]  T. W. Burrows,et al.  Evaluation of theoretical conversion coefficients using BrIcc , 2008 .

[14]  F. Kondev,et al.  Nuclear Data Sheets for A = 202☆ , 2008 .

[15]  F. Kondev,et al.  Nuclear Data Sheets for A = 200 , 2007 .

[16]  Huang Xiaolong,et al.  Nuclear Data Sheets for A = 196 , 2007 .

[17]  A. Stuchbery,et al.  Nuclear g factors and structure of high-spin isomers in 190,192,194 Pt and 196,198 Hg , 2006 .

[18]  Z. Podolyák,et al.  Isomers in neutron-rich A ≈ 190 nuclides from 208Pb fragmentation , 2005 .

[19]  K. Vetter,et al.  Effective charge of the (pi)h(11/2) orbital and the electric field gradient of Hg from the Yrast structure of 206Hg. , 2001, Physical review letters.

[20]  C. Baglin Nuclear Data Sheets for A = 192 , 1998 .

[21]  M. Scadron Scalar $\sigma$ meson via chiral and crossing dynamics , 1997, hep-ph/9710317.

[22]  D. Blumenthal,et al.  Collective and quasiparticle excitations in superdeformed {sup 190}Hg , 1996 .

[23]  R. Janssens,et al.  New Physics Opportunities at Gammasphere , 1996 .

[24]  D. C. Radford,et al.  ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets , 1995 .

[25]  Henry,et al.  Quasiparticle excitations in superdeformed 192Hg. , 1995, Physical review. C, Nuclear physics.

[26]  W. Gast,et al.  Spectroscopy of195Hg and196Hg , 1991 .

[27]  A. Krämer-Flecken,et al.  Use of DCO ratios for spin determination in γ-γ coincidence measurements , 1989 .

[28]  S. Frauendorf,et al.  Quasiparticle levels in rotating rare earth nuclei: A cranked shell-model dictionary , 1986 .

[29]  M. Guttormsen,et al.  High-spin structure of 190–194Hg and the cranked shell model , 1986 .

[30]  C. Günther,et al.  Investigation of196,198Pt and202,204Hg with the (d, pnγ) reaction , 1984 .

[31]  Z. Szymański,et al.  High-spin phenomena in atomic nuclei , 1983 .

[32]  P. J. Daly,et al.  Rotation-aligned bands in /sup 196/Hg , 1983 .

[33]  H. Kluge,et al.  The (vi2132)8+, 10+, 12+ triplets in 190–196Hg , 1983 .

[34]  S. Frauendorf,et al.  Quasiparticle spectra near the yrast line , 1979 .

[35]  R. Tischler,et al.  High-Spin States in Even Hg Nuclei and Rotation Alignment in Hg-198 , 1977 .

[36]  J. Cizewski,et al.  Level structure andγtransitions inHg202studied by the (n, γ) reaction , 1975 .

[37]  F. Stephens,et al.  High-spin excitation modes in even Hg nuclei , 1974 .

[38]  P. J. Daly,et al.  High spin negative parity states in doubly even Hg, Pt, and Os nuclei , 1974 .

[39]  R. M. Wheeler,et al.  Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods , 1973 .

[40]  W. T. Milner,et al.  SHORT NUCLEAR LIFETIME MEASUREMENTS VIA THE PULSE BEAM DELAYED-COINCIDENCE TECHNIQUE. , 1971 .

[41]  J. Brasz,et al.  Lifetimes of high-spin states in doubly even Pt and Hg isotopes , 1970 .