Evolutionary games of condensates in coupled birth–death processes

Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates.

[1]  P. Hänggi,et al.  Driven quantum tunneling , 1998 .

[2]  B. Sinervo,et al.  The rock–paper–scissors game and the evolution of alternative male strategies , 1996, Nature.

[3]  C. Hauert,et al.  Coevolutionary dynamics: from finite to infinite populations. , 2004, Physical review letters.

[4]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[5]  D. Fudenberg,et al.  Emergence of cooperation and evolutionary stability in finite populations , 2004, Nature.

[6]  B. Waclaw,et al.  Condensation in stochastic mass transport models: beyond the zero-range process , 2013, 1312.5642.

[7]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[8]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[9]  Joachim Krug,et al.  LETTER TO THE EDITOR: Phase transitions in driven diffusive systems with random rates , 1996 .

[10]  T. Kriecherbauer,et al.  A pedestrian's view on interacting particle systems, KPZ universality and random matrices , 2008, 0803.2796.

[11]  T. Reichenbach,et al.  Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games , 2007, Nature.

[12]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[13]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[14]  S. Ferrari,et al.  Author contributions , 2021 .

[15]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[16]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[18]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[19]  A. Rubenchik,et al.  Nonlinear stage of parametric wave excitation in a plasma , 1974 .

[20]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[21]  Cuthbert Edmund Cullis Matrices and Determinoids , 1926, Nature.

[22]  M. S. Zubairy,et al.  Condensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy , 2000 .

[23]  Erwin Frey,et al.  Specialization and bet hedging in heterogeneous populations. , 2014, Physical review letters.

[24]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[25]  R Mahnke,et al.  Zero-range model of traffic flow. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Madeleine Opitz,et al.  Chemical warfare and survival strategies in bacterial range expansions , 2014, Journal of The Royal Society Interface.

[27]  H. Stoof,et al.  Condensate growth in trapped Bose gases , 2000, cond-mat/0001323.

[28]  Erwin Frey,et al.  Coexistence and survival in conservative Lotka-Volterra networks. , 2013, Physical review letters.

[29]  A. Eckardt,et al.  Generalized Bose-Einstein condensation into multiple states in driven-dissipative systems. , 2013, Physical review letters.

[30]  Boltzmann Equation on Some Algebraic Structure Concerning Struggle for Existence , 1971 .

[31]  Peter Hanggi,et al.  Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator , 1997 .

[32]  Harold William Kuhn,et al.  Linear Inequalities and Related Systems. (AM-38) , 1957 .

[33]  A. Einstein Quantentheorie des einatomigen idealen Gases , 2006 .

[34]  A. Tucker,et al.  Linear Inequalities And Related Systems , 1956 .

[35]  R. May Qualitative Stability in Model Ecosystems , 1973 .

[36]  Marco Tomassini,et al.  Binary birth-death dynamics and the expansion of cooperation by means of self-organized growth , 2014, ArXiv.

[37]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[38]  M. R. Evans,et al.  Bose-Einstein condensation in disordered exclusion models and relation to traffic flow , 1996 .

[39]  P. Zoller,et al.  Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting Bose gas without a trapping potential , 1996, quant-ph/9611043.

[40]  F. Pregl Festschrift zum 60. Geburtstag , 1929 .

[41]  Elliott W. Montroll,et al.  Nonlinear Population Dynamics. (Book Reviews: On the Volterra and Other Nonlinear Models of Interacting Populations) , 1971 .

[42]  Fragmentation of Bose-Einstein Condensates , 2006, cond-mat/0605711.

[43]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[44]  Graham,et al.  Dynamical localization in the microwave interaction of Rydberg atoms: The influence of noise. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[45]  Wolfgang Ketterle,et al.  Bose–Einstein condensation of atomic gases , 2002, Nature.

[46]  Francesco Petruccione,et al.  Concepts and Methods in the Theory of Open Quantum Systems , 2003, quant-ph/0302047.

[47]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[48]  Stefano Allesina,et al.  A competitive network theory of species diversity , 2011, Proceedings of the National Academy of Sciences.

[49]  R K P Zia,et al.  Saddles, arrows, and spirals: deterministic trajectories in cyclic competition of four species. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Quantum Kinetic Theory of Condensate Growth: Comparison of Experiment and Theory , 1998, cond-mat/9806295.

[51]  Breuer,et al.  Quasistationary distributions of dissipative nonlinear quantum oscillators in strong periodic driving fields , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  Th. Just,et al.  Festschrift zum 60. , 1940 .

[53]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[54]  Limit-cycle oscillations and chaos in reaction networks subject to conservation of mass. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[56]  E. Di Cera,et al.  Chemical oscillations in closed macromolecular systems. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[57]  O. Penrose,et al.  Bose-Einstein Condensation and Liquid Helium , 1956 .

[58]  Quantum kinetic theory for a condensed bosonic gas , 1998, cond-mat/9810150.

[59]  William B. Kristan,et al.  Faculty Opinions recommendation of Network motifs: simple building blocks of complex networks. , 2002 .

[60]  Louise Dyson,et al.  Noise-induced bistable states and their mean switching time in foraging colonies. , 2013, Physical review letters.

[61]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[62]  MARK R. GARDNER,et al.  Connectance of Large Dynamic (Cybernetic) Systems: Critical Values for Stability , 1970, Nature.

[63]  Erwin Frey,et al.  Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[65]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[66]  Erwin Frey,et al.  Evolutionary game theory in growing populations. , 2010, Physical review letters.

[67]  N. G. Van Kampen,et al.  Chapter III – STOCHASTIC PROCESSES , 2007 .

[68]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[69]  Kei Tokita,et al.  Large-Dimensional Replicator Equations with Antisymmetric Random Interactions , 2002 .

[70]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[71]  E. Akin,et al.  Evolutionary dynamics of zero-sum games , 1984, Journal of mathematical biology.

[72]  B. M. Fulk MATH , 1992 .

[73]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[74]  A J McKane,et al.  Predator-prey cycles from resonant amplification of demographic stochasticity. , 2005, Physical review letters.

[75]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[76]  M. Evans,et al.  Nonequilibrium statistical mechanics of the zero-range process and related models , 2005, cond-mat/0501338.

[77]  Attila Szolnoki,et al.  Cyclic dominance in evolutionary games: a review , 2014, Journal of The Royal Society Interface.

[78]  C. Gardiner Stochastic Methods: A Handbook for the Natural and Social Sciences , 2009 .

[79]  Albert Einstein,et al.  Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung , 2006 .

[80]  B. Schmittmann,et al.  Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states , 2007 .

[81]  I. Prigogine Time, Structure, and Fluctuations , 1978, Science.