Non-geometric fluxes, asymmetric strings and nonassociative geometry

We study closed bosonic strings propagating both in a flat background with constant H-flux and in its T-dual configurations. We define a conformal field theory capturing linear effects in the flux and compute scattering amplitudes of tachyons, where the Rogers dilogarithm plays a prominent role. For the scattering of four tachyons, a fluxed version of the Virasoro–Shapiro amplitude is derived and its pole structure is analysed. In the case of an R-flux background obtained after three T-dualities, we find indications for a nonassociative target-space structure which can be described in terms of a deformed tri-product. Remarkably, this product is compatible with crossing symmetry of conformal correlation functions. We finally argue that the R-flux background flows to an asymmetric CFT.

[1]  Classical and quantum dilogarithmic invariants of flat PSL(2,C) -bundles over 3-manifolds , 2003, math/0306283.

[2]  Non-commutative open string and D-brane , 1998, hep-th/9812219.

[3]  D. Freedman,et al.  The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model , 1981 .

[4]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[5]  E. Fradkin,et al.  Non-linear electrodynamics from quantized strings , 1985 .

[6]  E. Braaten,et al.  Torsion and geometrostasis in nonlinear sigma models , 1985 .

[7]  Alexander B. Zamolodchikov,et al.  Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory , 1986 .

[8]  R. Blumenhagen,et al.  Nonassociative gravity in string theory? , 2010, 1010.1263.

[9]  J. Cardy,et al.  Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems , 1987 .

[10]  D. Freed,et al.  Anomalies in string theory with D-branes , 1999, hep-th/9907189.

[11]  L. Cornalba,et al.  Nonassociative Star Product Deformations for D-Brane World-Volumes in Curved Backgrounds , 2001, hep-th/0101219.

[12]  D. Lüst T-duality and closed string non-commutative (doubled) geometry , 2010, 1010.1361.

[13]  V. Schomerus D-branes and Deformation Quantization , 1999, hep-th/9903205.

[14]  J. McGreevy,et al.  Geometric constructions of nongeometric string theories , 2002, hep-th/0208174.

[15]  D. Lüst,et al.  A ten-dimensional action for non-geometric fluxes , 2011, 1106.4015.

[16]  C. Callan,et al.  String loop corrections to beta functions , 1987 .

[17]  I. Giannakis,et al.  T-duality in arbitrary string backgrounds , 1995, hep-th/9511061.

[18]  A.Yu. Alekseev,et al.  Non-commutative worldvolume geometries: D-branes on SU(2) and fuzzy spheres , 1999 .

[19]  Nathan Seiberg,et al.  String theory and noncommutative geometry , 1999 .

[20]  Nonassociative Tori and Applications to T-Duality , 2004, hep-th/0412092.

[21]  C. Hull A geometry for non-geometric string backgrounds , 2004, hep-th/0406102.

[22]  B. Wecht Lectures on nongeometric flux compactifications , 2007, 0708.3984.

[23]  Duality twists, orbifolds, and fluxes , 2002, hep-th/0210209.

[24]  C. Callan,et al.  Open strings in background gauge fields , 1987 .

[25]  W. Taylor,et al.  Nongeometric flux compactifications , 2005, hep-th/0508133.

[26]  W. Neumann Extended Bloch group and the Cheeger-Chern-Simons class , 2003, math/0307092.

[27]  Walter D. Neumann Hilbert’s 3rd Problem and Invariants of 3–manifolds , 1997 .

[28]  D. Zagier The dilogarithm function in geometry and number theory , 1989 .

[29]  Alain Connes,et al.  Noncommutative Geometry and Matrix Theory: Compactification on Tori , 1997, hep-th/9711162.

[30]  Conformal Field Theory and Geometry of Strings , 1993, hep-th/9310187.

[31]  D. Lewellen,et al.  A Relation Between Tree Amplitudes of Closed and Open Strings , 1986 .