GPU-Embedding of kNN-Graph Representing Large and High-Dimensional Data
暂无分享,去创建一个
Witold Dzwinel | Bartosz Minch | Mateusz Nowak | Rafał Wcisło | M. Nowak | W. Dzwinel | R. Wcislo | B. Minch
[1] Manfred K. Warmuth,et al. TriMap: Large-scale Dimensionality Reduction Using Triplets , 2019, ArXiv.
[2] Geoffrey E. Hinton,et al. Stochastic Neighbor Embedding , 2002, NIPS.
[3] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[4] Xiaopeng Zhang,et al. Capacity Preserving Mapping for High-dimensional Data Visualization , 2019, ArXiv.
[5] J. Douglas Carroll,et al. Two-Way Multidimensional Scaling: A Review , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[6] Witold Dzwinel,et al. Method of particles in visual clustering of multi-dimensional and large data sets , 1999, Future Gener. Comput. Syst..
[7] Jingzhou Liu,et al. Visualizing Large-scale and High-dimensional Data , 2016, WWW.
[8] David A. Yuen,et al. Visual exploration of data by using multidimensional scaling on multicore CPU, GPU, and MPI cluster , 2014, Concurrency and Computation.
[9] John Canny,et al. GPU accelerated t-distributed stochastic neighbor embedding , 2019, J. Parallel Distributed Comput..
[10] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[11] Jeff Johnson,et al. Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.
[12] Witold Dzwinel,et al. ivga: A fast force-directed method for interactive visualization of complex networks , 2017, J. Comput. Sci..
[13] Nupur Kumari,et al. ShapeVis: High-dimensional Data Visualization at Scale , 2020, WWW.
[14] Stan Matwin,et al. 2-D Embedding of Large and High-dimensional Data with Minimal Memory and Computational Time Requirements , 2019, ArXiv.
[15] Deng Cai,et al. AtSNE: Efficient and Robust Visualization on GPU through Hierarchical Optimization , 2019, KDD.
[16] Leland McInnes,et al. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.
[17] Sebastian Ruder,et al. An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.
[18] Witold Dzwinel,et al. ivga: visualization of the network of historical events , 2017, IML.
[19] Leland McInnes,et al. UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..
[20] Elmar Eisemann,et al. Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.