Re-engineering Escherichia coli for ethanol production

A lactate producing derivative of Escherichia coli KO11, strain SZ110, was re-engineered for ethanol production by deleting genes encoding all fermentative routes for NADH and randomly inserting a promoterless mini-Tn5 cassette (transpososome) containing the complete Zymomonas mobilis ethanol pathway (pdc, adhA, and adhB) into the chromosome. By selecting for fermentative growth in mineral salts medium containing xylose, a highly productive strain was isolated in which the ethanol cassette had been integrated behind the rrlE promoter, designated strain LY160 (KO11, Δfrd::celYEc ΔadhE ΔldhA, ΔackAlacA::casABKorrlE::(pdcZm-adhAZm-adhBZm-FRT-rrlE) pflB+). This strain fermented 9% (w/v) xylose to 4% (w/v) ethanol in 48 h in mineral salts medium, nearly equal to the performance of KO11 with Luria broth.

[1]  K. Shanmugam,et al.  Fermentation of 12% (w/v) Glucose to 1.2 m Lactate by Escherichia coli Strain SZ194 using Mineral Salts Medium , 2006, Biotechnology Letters.

[2]  John Pierce,et al.  Bio-Based Industrial Products: Priorities for Research and Commercialization , 2000 .

[3]  L. Ingram,et al.  Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineeredEscherichia coli strain KO11 , 2005, Journal of Industrial Microbiology.

[4]  K. Shanmugam,et al.  Methylglyoxal Bypass Identified as Source of Chiral Contamination in l(+) and d(−)-lactate Fermentations by Recombinant Escherichia coli , 2006, Biotechnology Letters.

[5]  K. Shanmugam,et al.  Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II , 1991, Applied and environmental microbiology.

[6]  K. Struhl,et al.  Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience). Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. , 1988 .

[7]  F. Neidhardt,et al.  Physiological regulation of a decontrolled lac operon , 1977, Journal of bacteriology.

[8]  K. Shanmugam,et al.  Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[10]  F. C. Davis,et al.  Biosynthetic Burden and Plasmid Burden Limit Expression of Chromosomally Integrated Heterologous Genes (pdc, adhB) in Escherichia coli , 1999, Biotechnology progress.

[11]  L. Ingram,et al.  Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress , 2005, Applied and Environmental Microbiology.

[12]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Ingram,et al.  Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement , 1996, Biotechnology Letters.

[14]  K. Shanmugam,et al.  Fermentation of 10% (w/v) Sugar to D(−)-Lactate by Engineered Escherichia coli B , 2005, Biotechnology Letters.

[15]  K. Shanmugam,et al.  Chromosomal Integration of Heterologous DNA in Escherichia coli with Precise Removal of Markers and Replicons Used during Construction , 1999, Journal of bacteriology.

[16]  L. Ingram,et al.  Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis , 1987, Journal of bacteriology.

[17]  Moniruzzaman,et al.  Metabolic engineering of bacteria for ethanol production , 1998, Biotechnology and bioengineering.

[18]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[19]  V. de Lorenzo,et al.  Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria , 1990, Journal of bacteriology.

[20]  K. Shanmugam,et al.  Betaine Tripled the Volumetric Productivity of d(-)-lactate by Escherichia coli Strain SZ132 in Mineral Salts Medium , 2006, Biotechnology Letters.

[21]  L. Ingram,et al.  Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc , 1989, Journal of bacteriology.

[22]  L. Ingram,et al.  Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli , 1989, Applied and environmental microbiology.

[23]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[24]  L. Ingram,et al.  Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): sequence comparison and expression in Escherichia coli , 1990, Journal of bacteriology.

[25]  K. Shanmugam,et al.  Lack of Protective Osmolytes Limits Final Cell Density and Volumetric Productivity of Ethanologenic Escherichia coli KO11 during Xylose Fermentation , 2004, Applied and Environmental Microbiology.

[26]  R. Greasham,et al.  Chemically defined media for commercial fermentations , 1999, Applied Microbiology and Biotechnology.

[27]  F. Blattner,et al.  Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome , 1997, Journal of bacteriology.