A three-dimensional stratigraphic model of the Mississippi River Delta, USA: implications for river deltaic hydrogeology

A three-dimensional stratigraphic model was constructed of the upper 50 m of the Mississippi River Delta, southeastern USA. The model is used to understand hydrogeological connections among the Mississippi River, adjacent interdistributary bays and groundwater systems, and to understand how stratigraphic settings affect potential anthropically induced subsidence and erosion in the region. This study uses 619 geotechnical borings throughout the area along with the multiple-indicator natural neighbor (MINN) interpolation method to construct the model. Based on available data, the study focused on the Mississippi River reach from Head of Passes (river mouth) to Jesuit Bend (108 km upstream), covering an area of approximately 1,800 km 2 and ranging in elevation from 3 to −46 m. The model shows typical basal coarse-grained sand bodies overlain by 10-m-thick blanket clay, which is interbedded frequently with silty and sandy sediments and occasionally with peat and organic clay. Sands are most abundant between elevations −10 and −35 m. The Mississippi River main channel incises the underlying sands, thereby providing pathways for river–groundwater exchange. Increased hydrologic loads may propagate along the flow paths potentially giving rise to high pore-water pressure and a resultant increase in land subsidence and thus local erosion of natural and local flood-control levees. This method of analysis may apply to other deltaic regions similarly subject to anthropically accelerated subsidence and erosion. Un modèle stratigraphique tridimensionnel a été construit sur les 50 m supérieurs du delta du fleuve Mississippi, dans le sud-est des États-Unis. Ce modèle est utilisé pour comprendre les connexions hydrogéologiques entre le fleuve Mississippi, les baies inter-distributaires adjacentes et les eaux souterraines et pour comprendre comment le contexte stratigraphique affecte l’affaissement et l’érosion anthropiques potentiels dans la région. Cette étude utilise 619 forages géotechniques répartis sur la zone, associés à une méthode d’interpolation par voisins naturels à indicateurs multiples pour construire le modèle. En fonction des données disponibles, l’étude s’est concentrée sur le tronçon du fleuve Mississippi allant de Head of Passes (l’embouchure) à Jesuit Bend (108 km en amont), qui couvre une superficie d’environ 1,800 km 2 et dont l’altitude varie de 3 à −46 m. Le modèle montre des zones basales typiques composées de sable grossier et recouvertes de bancs d’argile de 10 m d’épaisseur, comportant fréquemment des intercalations de limons et sables et occasionnellement de la tourbe et de l’argile organique. Les sables sont plus abondants entre −10 et −35 m d’altitude. Le chenal principal du fleuve Mississippi incise les sables sous-jacents, favorisant ainsi les échanges nappe−rivière. L’augmentation des charges hydrauliques peut se propager le long des axes de circulation et potentiellement générer une pression élevée de l’eau interstitielle entrainant une augmentation de l’affaissement des terres et par conséquent une érosion locale des digues naturelles ou de celles localement destinées au contrôle des crues. Cette méthode d’analyse peut s’appliquer à d’autres régions deltaïques également soumises à un affaissement et à une érosion anthropiques accélérés. Se elaboró un modelo estratigráfico tridimensional de los 50 m superiores del Delta del Río Mississippi, al sudeste de los Estados Unidos. El modelo se utiliza para comprender las conexiones hidrogeológicas entre el río Mississippi, las bahías adyacentes y los sistemas de aguas subterráneas, y para comprender cómo los escenarios estratigráficos afectan a la posible subsidencia y erosión inducidas por el hombre en la región. Este estudio utiliza 619 perforaciones geotécnicas en toda la zona junto con el método de interpolación de vecinos naturales con indicadores múltiples (MINN) para construir el modelo. Sobre la base de los datos disponibles, el estudio se centró en el tramo del río Mississippi que va desde Head of Passes (desembocadura del río) hasta Jesuit Bend (108 km río arriba), que abarca una superficie de aproximadamente 1,800 km 2 y cuya elevación oscila entre 3 y −46 m. El modelo muestra típicos cuerpos de arena basal de grano grueso superpuestos por un manto de arcilla de 10 m de espesor, que se intercala frecuentemente con sedimentos limosos y arenosos y ocasionalmente con turba y arcilla orgánica. Las arenas son más abundantes entre las elevaciones de −10 m y −35 m. El canal principal del río Mississippi incide en las arenas subyacentes, proporcionando así vías para el intercambio de aguas subterráneas del río. El aumento de las cargas hidráulicas puede propagarse a lo largo de las trayectorias del flujo, lo que puede dar lugar a una elevada presión del agua de los poros y al consiguiente aumento de la subsidencia del terreno y, por lo tanto, a la erosión local de los albardones naturales y locales que controlan las crecidas. Este método de análisis puede aplicarse a otras regiones del deltaicas sometidas de manera similar a subsidencia y erosión de origen antrópico. 本研究建立了美国东南部密西西比河三角洲上游上部50米的三维地层模型。该模型用于了解密西西比河、相邻的分流湾和地下水系统之间的水文地质联系,并探知地层环境如何影响该地区潜在的人为引起的沉降和侵蚀。利用研究区619个工程钻孔,用多指标自然邻域(MINN)插值方法来构建模型。根据现有的资料,研究关注从Head of Passes(河口)到Jesuit Bend (上游108公里)的密西西比河河段,覆盖面积约1,800 km 2 ,海拔从3 m到−46 m不等。该模型显示典型的基底粗粒砂体上覆10 m厚的层状粘土,层间常夹有粉质和砂质沉积物,偶有泥炭和有机粘土。砂层主要在海拔−10 m和−35 m之间。密西西比河主河道切割底层的砂层,从而为河流−地下水交换提供了通道。增加的水文负荷可能沿水流路径传播并增加孔隙水压力,从而导致地面沉降增加,进而造成自然和当地防洪堤坝的局部侵蚀。这种分析方法可能适用于其他同样受到人为加速沉降和侵蚀的三角洲地区。 Um modelo estratigráfico tridimensional foi construído nos 50 m superiores do Delta do Rio Mississippi, sudeste dos EUA. O modelo é usado para entender as conexões hidrogeológicas entre o Rio Mississippi, as baías interdistributárias adjacentes e os sistemas de água subterrânea, e para entender como as configurações estratigráficas afetam a subsidência e a erosão potenciais induzidas antropicamente na região. Este estudo utiliza 619 furos geotécnicos em toda a área, juntamente com o método de interpolação de vizinho natural de múltiplos indicadores (VNMI) para construir o modelo. Com base nos dados disponíveis, o estudo concentrou-se no alcance do Rio Mississippi, desde a Cabeça dos Passes (foz do rio) até a Curva dos Jesuítas (108 km a montante), cobrindo uma área de aproximadamente 1,800 km 2 e variando em altitude de 3 a −46 m. O modelo mostra corpos típicos de areia de grão grosseiro basal revestidos por argila de 10 m de espessura, que é frequentemente intercalada com sedimentos siltosos e arenosos e, ocasionalmente, com turfa e argila orgânica. As areias são mais abundantes entre as elevações −10 me −35 m. O canal principal do Rio Mississippi perfura as areias subjacentes, fornecendo caminhos para as trocas entre rios e águas subterrâneas. Cargas hidrológicas aumentadas podem se propagar ao longo dos caminhos de fluxo, potencialmente causando alta pressão da água dos poros e um aumento resultante na subsidência de terreno e, portanto, erosão local dos diques naturais e locais de controle de enchentes. Este método de análise pode se aplicar a outras regiões deltaicas, sujeitas de maneira semelhante a subsidência e erosão antropicamente aceleradas.

[1]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[2]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[3]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .

[4]  William Herbert Hobbs,et al.  Geological Investigation of the Alluvial Valley of the Lower Mississippi River , 1947 .

[5]  H. N. Fisk Bar-Finger Sands of Mississippi Delta , 1961 .

[6]  J. M. Coleman,et al.  ABSTRACT: Cyclic Sedimentation in the Mississippi River Deltaic Plain , 1963 .

[7]  A. Hallam,et al.  Cyclic Sedimentation , 1963, Nature.

[8]  J. M. Coleman,et al.  Cyclic sedimentation in the Mississippi River deltaic plain: Gulf Coast Assoc , 1964 .

[9]  J. V. Lopik,et al.  Depositional Environments of the Mississippi River Deltaic Plain — Southeastern Louisiana , 1966 .

[10]  D. Frazier,et al.  Recent Peat Deposits-Louisiana Coastal Plain , 1969 .

[11]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[12]  T. Elliott Interdistributary bay sequences and their genesis , 1974 .

[13]  Donald G. Jorgensen,et al.  Relationships between basic soils-engineering equations and basic ground-water flow equations , 1980 .

[14]  R. Sibson A vector identity for the Dirichlet tessellation , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[16]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[17]  Dynamic changes and processes in the Mississippi River delta , 1988 .

[18]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[19]  R. Saucier Geomorphology and Quarternary Geologic History of the Lower Mississippi Valley. Volume 2. , 1994 .

[20]  Alex B. McBratney,et al.  Spatial prediction of soil properties from landform attributes derived from a digital elevation model , 1994 .

[21]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[22]  William C. Burnett,et al.  Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222 , 1996 .

[23]  W. Burnett,et al.  Field Evaluation of Seepage Meters in the Coastal Marine Environment , 1997 .

[24]  H. Roberts Dynamic Changes of the Holocene Mississippi River Delta Plain: The Delta Cycle , 1997 .

[25]  J. Pizzuto,et al.  Mathematical modeling of autocompaction of a Holocene transgressive valley-fill deposit, Wolfe Glade, Delaware , 1997 .

[26]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[27]  H. Kooi,et al.  Land subsidence and hydrodynamic compaction of sedimentary basins , 1998 .

[28]  Rama,et al.  and in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input , 1999 .

[29]  J. Hooke Decades of change : contributions of geomorphology to fluvial and coastal engineering and management , 1999 .

[30]  H. Kooi Land subsidence due to compaction in the coastal area of The Netherlands: the role of lateral fluid flow and constraints from well-log data , 2000 .

[31]  J. Bourne,et al.  Louisiana's Vanishing Wetlands: Going, Going ... , 2000, Science.

[32]  Clayton V. Deutsch,et al.  FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems , 2002 .

[33]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[34]  W. Moore,et al.  Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico , 2004 .

[35]  G. Gambolati,et al.  Saving Venice by seawater , 2004 .

[36]  J. Syvitski,et al.  Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean , 2005, Science.

[37]  Frank T.-C. Tsai,et al.  Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems , 2005 .

[38]  D. FitzGerald,et al.  The Impact of Physical Processes along the Louisiana Coast , 2005 .

[39]  J. Bhattacharya,et al.  Terminal Distributary Channels and Delta Front Architecture of River-Dominated Delta Systems , 2006 .

[40]  Roy K. Dokka,et al.  Modern-day tectonic subsidence in coastal Louisiana , 2006 .

[41]  S. L. Barbour,et al.  Field methods for measuring hydraulic properties of peat deposits , 2006 .

[42]  T. Stieglitz,et al.  Quantifying submarine groundwater discharge in the coastal zone via multiple methods. , 2006, The Science of the total environment.

[43]  S. Lawrence Dingman,et al.  Effective sea-level rise and deltas: Causes of change and human dimension implications , 2006 .

[44]  T. Meckel,et al.  Current subsidence rates due to compaction of Holocene sediments in southern Louisiana , 2006 .

[45]  H. Ronald Riggs,et al.  Lessons from Hurricane Katrina Storm Surge on Bridges and Buildings , 2007 .

[46]  R. Pöttler,et al.  Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards , 2007 .

[47]  C. C. Watson,et al.  Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita , 2007, Science.

[48]  E. Langendoen,et al.  Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage , 2007 .

[49]  J. Walsh,et al.  Assessing the importance of tropical cyclones on continental margin sedimentation in the Mississippi delta region , 2007 .

[50]  John C. Warner,et al.  Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model , 2008, Comput. Geosci..

[51]  T. Törnqvist,et al.  Mississippi Delta subsidence primarily caused by compaction of Holocene strata , 2008 .

[52]  Patricia L. Wiberg,et al.  Calculating wave-generated bottom orbital velocities from surface-wave parameters , 2008, Comput. Geosci..

[53]  Vipin Kumar,et al.  Similarity Measures for Categorical Data: A Comparative Evaluation , 2008, SDM.

[54]  J. Day,et al.  Geomorphology: Survive or subside? , 2008 .

[55]  C. Jang,et al.  Using multiple‐variable indicator kriging to assess groundwater quality for irrigation in the aquifers of the Choushui River alluvial fan , 2008 .

[56]  I. Overeem,et al.  Sinking deltas due to human activities , 2009 .

[57]  G. Lejeune Dirichlet,et al.  Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 2009 .

[58]  Dawn Lavoie,et al.  Understanding Subsidence Processes in Coastal Louisiana , 2009 .

[59]  Wonsuck Kim,et al.  Is It Feasible to Build New Land in the Mississippi River Delta , 2009 .

[60]  Harry H. Roberts,et al.  Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise , 2009 .

[61]  Bruce A. Ebersole,et al.  Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana , 2009 .

[62]  D. FitzGerald,et al.  Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA , 2009 .

[63]  J. Porthouse,et al.  Louisiana's Comprehensive Master Plan for a Sustainable Coast: A Response to Hurricanes Katrina and Rita in 2005 , 2010 .

[64]  W. Moore The effect of submarine groundwater discharge on the ocean. , 2010, Annual review of marine science.

[65]  G. Steyer Coastwide Reference Monitoring System (CRMS) , 2010 .

[66]  Dave Hale,et al.  A stable and fast implementation of natural neighbor interpolation , 2010 .

[67]  Giuseppe Gambolati,et al.  Land uplift due to subsurface fluid injection , 2011 .

[68]  Michael S. Kearney,et al.  Freshwater river diversions for marsh restoration in Louisiana: Twenty‐six years of changing vegetative cover and marsh area , 2011 .

[69]  Barry W. Eakins,et al.  Digital elevation models of New Orleans, Louisiana : procedures, data sources, and analysis , 2011 .

[70]  M. Allison,et al.  Numerical modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta building diversion , 2012 .

[71]  Thad C. Pratt,et al.  A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana , 2012 .

[72]  Lucas A. Walshire,et al.  Application of an alluvial architecture model to better understand seepage risk in floodplains , 2013 .

[73]  Jean-Louis Briaud,et al.  Geotechnical Engineering , 2013 .

[74]  J. Cable,et al.  Pathways and processes associated with the transport of groundwater in deltaic systems , 2013 .

[75]  R. Muñoz‐Carpena,et al.  Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments , 2013 .

[76]  Frank T.-C. Tsai,et al.  Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation , 2013 .

[77]  Mark Kulp,et al.  Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: Insights from geophysical modeling , 2014 .

[78]  M. Allison,et al.  Diversion of Mississippi River Water Downstream of New Orleans, Louisiana, USA to Maximize Sediment Capture and Ameliorate Coastal Land Loss , 2014, Water Resources Management.

[79]  William J. Sleavin,et al.  Forecasting landscape effects of Mississippi River diversions on elevation and accretion in Louisiana deltaic wetlands under future environmental uncertainty scenarios , 2014 .

[80]  Tomoaki Nakamura,et al.  An Experimental Study on the Wave-Induced Topographic Change in Artificial Shallows: Focusing on the Effects of Pore-Water Pressure on Sediment Transport , 2014 .

[81]  P. Sutton,et al.  Changes in the global value of ecosystem services , 2014 .

[82]  James Smith,et al.  What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas? , 2015, Scientific Reports.

[83]  Audrey H. Sawyer,et al.  Surface water‐groundwater connectivity in deltaic distributary channel networks , 2015 .

[84]  W. Nardin,et al.  Dynamics of river mouth deposits , 2015 .

[85]  Timothy H. Dixon,et al.  Global Risks and Research Priorities for Coastal Subsidence , 2016 .

[86]  Kehui Xu,et al.  Implications of Texture and Erodibility for Sediment Retention in Receiving Basins of Coastal Louisiana Diversions , 2016 .

[87]  Jillian M. Maloney,et al.  The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene , 2016 .

[88]  Jihyuk Kim Investigating groundwater inputs to Mississippi River Deltaic wetlands using spatial and temporal responses of the geochemical tracer, 222Rn , 2016 .

[89]  M. Allison,et al.  Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function , 2016 .

[90]  M. Allison,et al.  Riverside morphological response to pulsed sediment diversions , 2016 .

[91]  H. Beucher,et al.  Truncated Gaussian and derived methods , 2016 .

[92]  F. Tsai,et al.  Modeling complex aquifer systems: a case study in Baton Rouge, Louisiana (USA) , 2017, Hydrogeology Journal.

[93]  C. White,et al.  Efficient retention of mud drives land building on the Mississippi Delta plain , 2017 .

[94]  Brady R. Couvillion,et al.  Land area change in coastal Louisiana (1932 to 2016) , 2017 .

[95]  J. Cable,et al.  Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA , 2017 .

[96]  Zhenhao Wang,et al.  Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows–‘sub-bottom sediment pump action’ , 2017, Journal of Ocean University of China.

[97]  T. Törnqvist,et al.  Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise , 2017, Nature Communications.

[98]  Gary L. Brown,et al.  Investigation of discharge measurements of the Lower Mississippi River below Natchez, MS , 2017 .

[99]  N. Naranjo-Fernández,et al.  Applying 3D Geostatistical Simulation to Improve the Groundwater Management Modelling of Sedimentary Aquifers: The Case of Doñana (Southwest Spain) , 2018, Water.

[100]  F. Felletti,et al.  Three Geostatistical Methods for Hydrofacies Simulation Ranked Using a Large Borehole Lithology Dataset from the Venice Hinterland (NE Italy) , 2018, Water.

[101]  H. Roberts,et al.  Resolving the contributing factors to Mississippi Delta subsidence: Past and Present , 2018, Basin Research.

[102]  Xinghe Yu,et al.  Fluvial Depositional System , 2018 .

[103]  T. Törnqvist,et al.  Anatomy of Mississippi Delta growth and its implications for coastal restoration , 2018, Science Advances.

[104]  Kehui Xu,et al.  Deltaic morphodynamics and stratigraphic evolution of Middle Barataria Bay and Middle Breton Sound regions, Louisiana, USA: Implications for river-sediment diversions , 2019, Estuarine, Coastal and Shelf Science.

[105]  Kehui Xu,et al.  Degradation of the plaquemines sub-delta and relative sea-level in eastern Mississippi deltaic coast during late holocene , 2019, Estuarine, Coastal and Shelf Science.

[106]  F. Tsai,et al.  Modelling and comparing 3-D soil stratigraphy using subsurface borings and cone penetrometer tests in coastal Louisiana, USA , 2020, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards.

[107]  F. Tsai,et al.  Modeling sediment texture of river-deltaic wetlands in the Lower Barataria Bay and Lower Breton Sound, Louisiana, USA , 2019, Geo-Marine Letters.