Low-frequency electric field and density fluctuation measurements on Solar Orbiter

Solar Orbiter will orbit the Sun down to a distance of 0.22 AU allowing detailed in situ studies of important but unexplored regions of the solar wind in combination with coordinated remote sensing of the Sun. In-situ measurements require high quality measurements of particle distributions and electric and magnetic fields. We show that such important scientific topics as the identification of coronal heating remnants, solar wind turbulence, magnetic reconnection and shock formation within coronal mass ejections all require electric field and plasma density measurements in the frequency range from DC up to about 100 Hz. We discuss how such measurements can be achieved using the double-probe technique. We sketch a few possible antenna design solutions.

[1]  J. Raymond,et al.  Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November 18 , 2005 .

[2]  L. Burlaga,et al.  Magnetic fields and plasmas in the inner heliosphere: Helios results , 2001 .

[3]  Per-Arne Lindqvist,et al.  THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION , 1997 .

[4]  David J. McComas,et al.  Direct evidence for magnetic reconnection in the solar wind near 1 AU , 2004 .

[5]  S. Cranmer Coronal Heating versus Solar Wind Acceleration , 2004, astro-ph/0409724.

[6]  D. Plettemeier,et al.  Turbulence of the inner solar wind at solar maximum: Coronal radio sounding with Galileo in 1999/2000 , 2004 .

[7]  S. Knock,et al.  Theoretically predicted properties of type II radio emission from an interplanetary foreshock , 2003 .

[8]  R. Skoug,et al.  Petschek-Type Reconnection Exhausts in the Solar Wind Well beyond 1 AU: Ulysses , 2006 .

[9]  H. Reme,et al.  A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind , 2006, Nature.

[10]  A. Vaivads,et al.  Microphysics of Magnetic Reconnection , 2006 .

[11]  S. Speich,et al.  Modeling the structure and variability of the southern Benguela upwelling using QuikSCAT wind forcing , 2005 .

[12]  J. Gosling,et al.  Petschek‐type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios , 2006 .

[13]  W. Matthaeus,et al.  MHD-driven Kinetic Dissipation in the Solar Wind and Corona , 2000 .

[14]  E. Marsch,et al.  Spectral and spatial evolution of compressible turbulence in the inner solar wind , 1990 .

[15]  L. Sorriso-Valvo,et al.  On the Radial Evolution of Alfvénic Turbulence in the Solar Wind , 2006 .

[16]  Donald A. Gurnett,et al.  THE WIDE-BAND PLASMA WAVE INVESTIGATION , 1993 .

[17]  Richard G. Derwent,et al.  Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere , 2003 .

[18]  John R Wygant,et al.  The electric field instrument on the polar satellite , 1995 .

[19]  Eckart Marsch,et al.  Physics of the Inner Heliosphere II , 1990 .

[20]  T. Horbury,et al.  Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. , 2005, Physical review letters.

[21]  J. Richardson,et al.  Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU , 2005 .

[22]  Bernhard Fleck,et al.  Solar Orbiter—mission profile, main goals and present status , 2005 .

[23]  T. Horbury,et al.  Solar Wind Electric Fields in the Ion Cyclotron Frequency Range , 2006, physics/0602179.