Generation of mW Level in the 300-GHz Band Using Resonant-Cavity-Enhanced Unitraveling Carrier Photodiodes

We present a resonant-cavity-enhanced broadband unitraveling carrier photodiode optimized for terahertz (THz) generation. It uses a novel semitransparent top-contact utilizing subwavelength apertures for enhanced optical transmission. The contact allows front-side illumination of the photodiode using 1.55-μm-wavelength light, while still retaining a small contact resistance suitable for photomixing at THz frequencies. The responsivity of the device is improved by introducing a metallic mirror below the diode mesa through wafer bonding, producing an optical resonant cavity. A record continuous-wave output power of 750 μW is measured for a single photodiode at 300 GHz. Record values of efficiency are also demonstrated.

[1]  H. Ito,et al.  High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[2]  G. Ducournau,et al.  32 Gbit/s QPSK transmission at 385 GHz using coherent fibre-optic technologies and THz double heterodyne detection , 2015 .

[3]  Sascha Preu,et al.  Tunable, continuous-wave Terahertz photomixer sources and applications , 2011 .

[4]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[5]  T. Nagatsuma,et al.  Uni-traveling-carrier photodiodes , 1997 .

[6]  F. Pavanello,et al.  Resonant cavities for efficient LT-GaAs photoconductors operating at λ = 1550 nm , 2016 .

[7]  Efthymios Rouvalis,et al.  Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation. , 2010, Optics express.

[8]  H. Ito,et al.  High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Jean-François Lampin,et al.  Optically-pumped continuous-wave terahertz sources , 2015, SPIE OPTO.

[10]  S. Demiguel,et al.  A comparison of front- and backside-illuminated high-saturation power partially depleted absorber photodetectors , 2004, IEEE Journal of Quantum Electronics.

[11]  D G Moodie,et al.  Broadband Antenna-Integrated, Edge-Coupled Photomixers for Tuneable Terahertz Sources , 2010, IEEE Journal of Quantum Electronics.

[12]  J. Chyi,et al.  Resonant cavity-enhanced (RCE) photodetectors , 1991 .

[13]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[14]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[15]  Tadao Nagatsuma,et al.  Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link , 2016, 2016 IEEE International Topical Meeting on Microwave Photonics (MWP).

[16]  T. Nagatsuma,et al.  Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater Than 1 mW , 2012, IEEE Microwave and Wireless Components Letters.

[17]  T. Ishibashi,et al.  Unitraveling-Carrier Photodiodes for Terahertz Applications , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  John E. Bowers,et al.  Flip-Chip Bonding Packaged THz Photodiode With Broadband High-Power Performance , 2014, IEEE Photonics Technology Letters.

[19]  High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power , 2006, IEEE Photonics Technology Letters.

[20]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[21]  F. Mollot,et al.  High-efficiency uni-travelling-carrier photomixer at 1.55 μm and spectroscopy application up to 1.4 THz , 2008 .

[22]  K. Williams,et al.  Design considerations for high-current photodetectors , 1999 .

[23]  Guillermo Carpintero,et al.  Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research , 2015, IEICE Trans. Electron..

[24]  Emilien Peytavit,et al.  Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection , 2014, IEEE Transactions on Terahertz Science and Technology.

[25]  F. Pavanello,et al.  High efficiency UTC photodiodes as photonic emitters for 300 GHz high spectral efficiency wireless communications , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[26]  Emilien Peytavit,et al.  CW Source Based on Photomixing With Output Power Reaching 1.8 mW at 250 GHz , 2013, IEEE Electron Device Letters.

[27]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[28]  G. Chattopadhyay,et al.  Technology, Capabilities, and Performance of Low Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.