Distributed function computation over a tree network

This paper investigates a distributed function computation setting where the underlying network is a rooted directed tree and where the root wants to compute a function of the sources of information available at the nodes of the network. The main result provides the rate region for an arbitrary function under the assumption that the sources satisfy a general criterion. This criterion is satisfied, in particular, when the sources are independent.

[1]  Alon Orlitsky,et al.  Coding for computing , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[3]  Aslan Tchamkerten,et al.  Computing a Function of Correlated Sources , 2011, ArXiv.

[4]  Han-I Su,et al.  Cascade multiterminal source coding , 2009, 2009 IEEE International Symposium on Information Theory.

[5]  Panganamala Ramana Kumar,et al.  Optimal Function Computation in Directed and Undirected Graphs , 2011, IEEE Transactions on Information Theory.

[6]  H. S. WITSENHAUSEN,et al.  The zero-error side information problem and chromatic numbers (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[7]  Massimo Franceschetti,et al.  Network Coding for Computing: Cut-Set Bounds , 2009, IEEE Transactions on Information Theory.

[8]  Aslan Tchamkerten,et al.  On function computation over a cascade network , 2012, 2012 IEEE Information Theory Workshop.

[9]  Krishnamurthy Viswanathan,et al.  On the memory required to compute functions of streaming data , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Aslan Tchamkerten,et al.  On cooperation in multi-terminal computation and rate distortion , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.