Cellular model based on laser microsurgery of cell spheroids to study the repair process

[1]  A. Ovchinnikov,et al.  Laser-based technique for controlled damage of mesenchymal cell spheroids: a first step in studying reparation in vitro , 2016, Biology Open.

[2]  N. Kosheleva,et al.  The influence of peptide bioregulators on skin aging in 3D culture model , 2016 .

[3]  Dmitry S. Sitnikov,et al.  Application of femtosecond laser scalpel and optical tweezers for noncontact biopsy of late preimplantation embryos , 2015 .

[4]  N. Kosheleva,et al.  From 2D cell phenotypes to 3D live high-content imaging: new ways to windows , 2015 .

[5]  Georges Noel,et al.  Three-Dimensional Cell Culture: A Breakthrough in Vivo , 2015, International journal of molecular sciences.

[6]  N. Kosheleva,et al.  3D-Technology of the Formation and Maintenance of Single Dormant Microspheres from 2000 Human Somatic Cells and Their Reactivation In Vitro , 2014, Bulletin of Experimental Biology and Medicine.

[7]  Célian Bimbard,et al.  Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions , 2014, Proceedings of the National Academy of Sciences.

[8]  V. Venugopalan,et al.  Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses. , 2014, Applied physics letters.

[9]  A. Ovchinnikov,et al.  Noncontact microsurgery and delivery of substances into stem cells by means of femtosecond laser pulses , 2014 .

[10]  Dmitry S. Sitnikov,et al.  Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells , 2013 .

[11]  F. Pampaloni,et al.  High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy , 2013, Cell and Tissue Research.

[12]  Herbert Schneckenburger,et al.  Preparation strategy and illumination of three-dimensional cell cultures in light sheet–based fluorescence microscopy , 2012, Journal of biomedical optics.

[13]  Brendon M. Baker,et al.  Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues , 2012, Journal of Cell Science.

[14]  Olga Ilina,et al.  Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion , 2011, Physical biology.

[15]  Karsten König,et al.  Multiphoton fluorescence lifetime imaging of 3D‐stem cell spheroids during differentiation , 2011, Microscopy research and technique.

[16]  A. Bely Evolutionary loss of animal regeneration: pattern and process. , 2010, Integrative and comparative biology.

[17]  T. Falla,et al.  Cosmeceuticals and peptides. , 2009, Clinics in dermatology.

[18]  Michael Leiss,et al.  Formation and activation of fibroblast spheroids depend on fibronectin-integrin interaction. , 2008, Experimental cell research.

[19]  Hwan-You Chang,et al.  Recent advances in three‐dimensional multicellular spheroid culture for biomedical research , 2008, Biotechnology journal.

[20]  Karsten König,et al.  Targeted transfection of stem cells with sub-20 femtosecond laser pulses. , 2008, Optics express.

[21]  E. Makrantonaki,et al.  Molecular Mechanisms of Skin Aging , 2007, Annals of the New York Academy of Sciences.

[22]  A. Zelenin,et al.  Enhanced control of proliferation in telomerized cells , 2007, Russian Journal of Developmental Biology.

[23]  Karsten König,et al.  The influence of NIR femtosecond laser radiation on the viability of 3D stem cell clusters and tumor spheroids , 2007, SPIE BiOS.

[24]  Panagiotis A. Tsonis,et al.  Bridging the regeneration gap: genetic insights from diverse animal models , 2006, Nature Reviews Genetics.

[25]  B Agate,et al.  Femtosecond optical transfection of cells: viability and efficiency. , 2006, Optics express.

[26]  Vasan Venugopalan,et al.  Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects. , 2006, Biophysical journal.

[27]  Julien Colombelli,et al.  In vivo Selective Cytoskeleton Dynamics Quantification in Interphase Cells Induced by Pulsed Ultraviolet Laser Nanosurgery , 2005, Traffic.

[28]  D E Ingber,et al.  Pulse energy dependence of subcellular dissection by femtosecond laser pulses. , 2005, Optics express.

[29]  A. Khodjakov,et al.  Laser Microsurgery in Fission Yeast Role of the Mitotic Spindle Midzone in Anaphase B , 2004, Current Biology.

[30]  Gail Jenkins,et al.  Molecular mechanisms of skin ageing , 2002, Mechanisms of Ageing and Development.

[31]  Arthur Ashkin,et al.  Fertilization of bovine oocytes induced solely with combined laser microbeam and optical tweezers , 1996, Journal of Assisted Reproduction and Genetics.

[32]  I. V. Ilina,et al.  Femtosecond laser assisted hatching: Dependence of zona pellucida drilling efficiency and embryo development on laser wavelength and pulse energy , 2016 .

[33]  N. Kosheleva,et al.  Study of angiogenic potential of human multipotent mesenchymal stromal cells , 2013 .

[34]  John W Haycock,et al.  3D cell culture: a review of current approaches and techniques. , 2011, Methods in molecular biology.

[35]  S. Rattan 50 Aging of Skin Cells in Culture , 2010 .

[36]  J. Loncarek,et al.  Laser microsurgery in the GFP era: a cell biologist's perspective. , 2007, Methods in cell biology.

[37]  Eric Mazur,et al.  Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor. , 2005, Mechanics & chemistry of biosystems : MCB.

[38]  Renzo Antolini,et al.  Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope. , 2005, Journal of biomedical optics.

[39]  N. N. Luchinskaia,et al.  [Cytomechanical control of morphogenesis]. , 2000, Tsitologiia.

[40]  M. Yaar Molecular mechanisms of skin aging. , 1995, Advances in dermatology.