mGluR5 and NMDA Receptors Drive the Experience- and Activity-Dependent NMDA Receptor NR2B to NR2A Subunit Switch

[1]  M. Sheng,et al.  Distinct Roles of NR2A and NR2B Cytoplasmic Tails in Long-Term Potentiation , 2010, The Journal of Neuroscience.

[2]  L. Raymond,et al.  Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice , 2010, Neuron.

[3]  Young Ho Suh,et al.  A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking , 2010, Nature Neuroscience.

[4]  K. Roche,et al.  Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression , 2009, Proceedings of the National Academy of Sciences.

[5]  Wei Lu,et al.  Metaplastic Regulation of Long-Term Potentiation/Long-Term Depression Threshold by Activity-Dependent Changes of NR2A/NR2B Ratio , 2009, The Journal of Neuroscience.

[6]  W. Lu,et al.  Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor‐mediated synaptic responses , 2009, Hippocampus.

[7]  Mark F Bear,et al.  The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex , 2009, Proceedings of the National Academy of Sciences.

[8]  J. Rawlins,et al.  Contribution of Hippocampal and Extra-Hippocampal NR2B-Containing NMDA Receptors to Performance on Spatial Learning Tasks , 2008, Neuron.

[9]  Benjamin D. Philpot,et al.  Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity , 2008, Neuropharmacology.

[10]  Roberto Malinow,et al.  Cholinergic-Mediated IP3-Receptor Activation Induces Long-Lasting Synaptic Enhancement in CA1 Pyramidal Neurons , 2008, The Journal of Neuroscience.

[11]  R. Cunha,et al.  Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[12]  Hyung-Bae Kwon,et al.  Long-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses , 2008, Neuron.

[13]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[14]  K. Roche,et al.  Regulation of NMDA receptors by phosphorylation , 2007, Neuropharmacology.

[15]  D. Purpura,et al.  NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders , 2007, Nature Reviews Neuroscience.

[16]  L. Raymond,et al.  Altered NMDA Receptor Trafficking in a Yeast Artificial Chromosome Transgenic Mouse Model of Huntington's Disease , 2007, The Journal of Neuroscience.

[17]  Mark F. Bear,et al.  Obligatory Role of NR2A for Metaplasticity in Visual Cortex , 2007, Neuron.

[18]  M. Bear,et al.  Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression , 2007, Neuropharmacology.

[19]  David Lodge,et al.  Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus , 2007, Neuropharmacology.

[20]  D. Choquet,et al.  NMDA receptor surface mobility depends on NR2A-2B subunits , 2006, Proceedings of the National Academy of Sciences.

[21]  T. Bonhoeffer,et al.  Hippocampal Long-Term Potentiation Is Supported by Presynaptic and Postsynaptic Tyrosine Receptor Kinase B-Mediated Phospholipase Cγ Signaling , 2006, The Journal of Neuroscience.

[22]  H. Fields,et al.  Orexin A in the VTA Is Critical for the Induction of Synaptic Plasticity and Behavioral Sensitization to Cocaine , 2006, Neuron.

[23]  Hee-Sup Shin,et al.  Multiple Receptors Coupled to Phospholipase C Gate Long-Term Depression in Visual Cortex , 2005, The Journal of Neuroscience.

[24]  K. Mikoshiba,et al.  Involvement of IP3 receptors in LTP and LTD induction in guinea pig hippocampal CA1 neurons. , 2005, Learning & memory.

[25]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[26]  P. Paoletti,et al.  Modulation of Triheteromeric NMDA Receptors by N-Terminal Domain Ligands , 2005, Neuron.

[27]  Shigeo Watanabe,et al.  Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons , 2005, Cellular and Molecular Neurobiology.

[28]  P. Andersen,et al.  Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Cull-Candy,et al.  Role of Distinct NMDA Receptor Subtypes at Central Synapses , 2004, Science's STKE.

[30]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[31]  A. McAllister,et al.  Cycling of NMDA Receptors during Trafficking in Neurons before Synapse Formation , 2004, The Journal of Neuroscience.

[32]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[33]  J. Roder,et al.  Co-stimulation of mGluR5 and N-Methyl-D-aspartate Receptors Is Required for Potentiation of Excitatory Synaptic Transmission in Hippocampal Neurons* , 2003, Journal of Biological Chemistry.

[34]  Mark F Bear,et al.  Evidence for Altered NMDA Receptor Function as a Basis for Metaplasticity in Visual Cortex , 2003, The Journal of Neuroscience.

[35]  Mark Washburn,et al.  3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. , 2003, Journal of medicinal chemistry.

[36]  Graham L. Collingridge,et al.  Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression , 2002, Nature Neuroscience.

[37]  Roberto Malinow,et al.  Subunit-Specific NMDA Receptor Trafficking to Synapses , 2002, Neuron.

[38]  G. Westbrook,et al.  Mobile NMDA Receptors at Hippocampal Synapses , 2002, Neuron.

[39]  K. Roche,et al.  Molecular determinants of NMDA receptor internalization , 2001, Nature Neuroscience.

[40]  Mark Farrant,et al.  NMDA receptor subunits: diversity, development and disease , 2001, Current Opinion in Neurobiology.

[41]  K. Mikoshiba,et al.  Neuronal plasticity in hippocampal mossy fiber–CA3 synapses of mice lacking the inositol-1,4,5-trisphosphate type 1 receptor , 2001, Brain Research.

[42]  M. Montcouquiol,et al.  Postnatal developmental changes in AMPA and NMDA receptors in the rat vestibular nuclei. , 2000, Brain research. Developmental brain research.

[43]  M. Bear,et al.  Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. , 2000, Science.

[44]  J. Harris,et al.  Neuroprotective Actions of Novel and Potent Ligands of Group I and Group II Metabotropic Glutamate Receptors , 1999, Annals of the New York Academy of Sciences.

[45]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[46]  Marc G Caron,et al.  Mice with Reduced NMDA Receptor Expression Display Behaviors Related to Schizophrenia , 1999, Cell.

[47]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[48]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[49]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[50]  K. Mikoshiba,et al.  Neural plasticity in hippocampal mossy fiber-CA3 synapses of the mice lacking inositol-1,4,5-trisphosphate type 1 receptor , 1998, Neuroscience Research.

[51]  J. Roder,et al.  Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. , 1998, Learning & memory.

[52]  R. Colbran,et al.  Autophosphorylation-dependent Targeting of Calcium/ Calmodulin-dependent Protein Kinase II by the NR2B Subunit of theN-Methyl- d-aspartate Receptor* , 1998, The Journal of Biological Chemistry.

[53]  Richard F. Thompson,et al.  Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo , 1998, Cell.

[54]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[55]  Y. Yaari,et al.  Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. , 1996, The Journal of physiology.

[56]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit , 1995, Nature.

[57]  Y. Jan,et al.  Changing subunit composition of heteromeric NMDA receptors during development of rat cortex , 1994, Nature.

[58]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[59]  Michael J. Rowan,et al.  Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation , 1994, Nature.

[60]  K Williams,et al.  Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. , 1993, Molecular pharmacology.

[61]  K. Williams,et al.  Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro , 1993, Neuron.

[62]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[63]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[64]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[65]  G. Collingridge,et al.  Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus , 1991, Nature.

[66]  R. Tsien,et al.  Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices , 1990, Nature.

[67]  P. Greengard,et al.  Regulation of NMDA receptor trafficking by amyloid-beta. , 2005, Nature neuroscience.

[68]  S. Coultrap,et al.  LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1 , 2002, Nature Neuroscience.

[69]  M. Bear,et al.  Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex , 2001, Neuron.

[70]  T. Yagi,et al.  Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. , 1995, Nature.