On detecting harmonic oscillations
暂无分享,去创建一个
[1] H. Hartley,et al. Tests of significance in harmonic analysis. , 1949, Biometrika.
[2] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[3] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[4] R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .
[5] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[6] B. Hofmann-Wellenhof,et al. Introduction to spectral analysis , 1986 .
[7] Shean-Tsong Chiu,et al. Detecting Periodic Components in a White Gaussian Time Series , 1989 .
[8] A. Nemirovskii,et al. On nonparametric estimation of functions satisfying differential inequalities , 1992 .
[9] E. Hannan. Determining the number of jumps in a spectrum , 1993 .
[10] E. Hannan,et al. DETERMINING THE NUMBER OF TERMS IN A TRIGONOMETRIC REGRESSION , 1994 .
[11] Peter J. Kootsookos,et al. Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..
[12] Petar M. Djuric,et al. A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..
[13] Arkadi Nemirovski,et al. Adaptive de-noising of signals satisfying differential inequalities , 1997, IEEE Trans. Inf. Theory.
[14] Barry G. Quinn,et al. The Estimation and Tracking of Frequency , 2001 .
[15] Dharmendra Lingaiah,et al. The Estimation and Tracking of Frequency , 2004 .
[16] N. Davies. Multiple Time Series , 2005 .
[17] A. Juditsky,et al. Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities , 2008, 0809.0814.
[18] A. Juditsky,et al. Nonparametric denoising signals of unknown local structure, II: Nonparametric function recovery , 2010 .
[19] Aryeh Kontorovich,et al. Model Selection for Sinusoids in Noise: Statistical Analysis and a New Penalty Term , 2011, IEEE Transactions on Signal Processing.