Practical stabilization of driftless systems on Lie groups: the transverse function approach

A general control design approach for the stabilization of controllable driftless nonlinear systems on finite dimensional Lie groups is presented. The approach is based on the concept of bounded transverse functions, the existence of which is equivalent to the system's controllability. Its outcome is the practical stabilization of any trajectory, i.e., not necessarily a solution of the control system, in the state-space. The possibility of applying the approach to an arbitrary controllable smooth driftless system follows in turn from the fact that any controllable homogeneous approximation of this system can be lifted (via a dynamic extension) to a system on a Lie group. Illustrative examples are given.

[1]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[2]  Claude Samson,et al.  On the robust stabilization of chained systems by continuous feedback , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[4]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[5]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[6]  Gerald B. Folland,et al.  On the rothschild-stein lifting theorem , 1977 .

[7]  H. Sussmann Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-Input Systems , 1983 .

[8]  D. Dawson,et al.  Robust tracking and regulation control for mobile robots , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[9]  Gianna Stefani Polynomial approximations to control systems and local controllability , 1985, 1985 24th IEEE Conference on Decision and Control.

[10]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[11]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[12]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[13]  P. Morin,et al.  Non-robustness of continuous homogeneous stabilizers for affine control systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[15]  Pierre Rouchon,et al.  Robust stabilization of flat and chained systems , 1995 .

[16]  Darren M. Dawson,et al.  An adaptive controller for a class of induction motor systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[17]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[18]  Héctor J. Sussmann,et al.  Noncommutative Power Series and Formal Lie-algebraic Techniques in Nonlinear Control Theory , 1997 .

[19]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[20]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[21]  David A. Lizárraga,et al.  Obstructions to the Existence of Universal Stabilizers for Smooth Control Systems , 2004, Math. Control. Signals Syst..

[22]  Pascal Morin,et al.  Control of nonlinear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers , 2000, IEEE Trans. Autom. Control..

[23]  Naomi Ehrich Leonard,et al.  Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..

[24]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[25]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[26]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[27]  C. Samson,et al.  Practical stabilization of a class of nonlinear systems. Application to chain systems and mobile robots , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[29]  Jean-Baptiste Pomet,et al.  Time-varying exponential stabilization of nonholonomic systems in power form , 1994 .

[30]  Pascal Morin,et al.  Practical stabilization of driftless systems on Lie groups , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[31]  Sergey V. Drakunov,et al.  Stabilization and tracking in the nonholonomic integrator via sliding modes , 1996 .

[32]  Yutaka Kanayama,et al.  A locomotion control method for autonomous vehicles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[33]  Matthias Kawski,et al.  Nonlinear Control and Combinatorics of Words , 1997 .

[34]  Wei Lin,et al.  Recursive design of discontinuous controllers for uncertain driftless systems in power chained form , 2000, IEEE Trans. Autom. Control..

[35]  Pascal Morin,et al.  Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop , 1999, SIAM J. Control. Optim..

[36]  C. Samson,et al.  EXPONENTIAL STABILIZATION OF NONLINEAR DRIFTLESS SYSTEMS WITH ROBUSTNESS TO UNMODELED DYNAMICS , 1999 .

[37]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[38]  Pascal Morin,et al.  A Characterization of the Lie Algebra Rank Condition by Transverse Periodic Functions , 2002, SIAM J. Control. Optim..

[39]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[40]  Wensheng Liu,et al.  An Approximation Algorithm for Nonholonomic Systems , 1997 .

[41]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[42]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[43]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[44]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[45]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[46]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[47]  Richard M. Murray,et al.  Non-holonomic control systems: from steering to stabilization with sinusoids , 1995 .