Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters

Aims. We propose the Wind of Fast Rotating Massive Stars scenario to explain the origin of the abundance anomalies observed in globular clusters. Methods. We compute and present models of fast rotating stars with initial masses between 20 and 120 $M_\odot$ for an initial metallicity Z  = 0.0005 (${\rm [Fe/H]}\simeq-1.5$). We discuss the nucleosynthesis in the H-burning core of these objects and present the chemical composition of their ejecta. We consider the impact of uncertainties in the relevant nuclear reaction rates. Results. Fast rotating stars reach critical velocity at the beginning of their evolution and remain near the critical limit during the rest of the main sequence and part of the He-burning phase. As a consequence they lose large amounts of material through a mechanical wind which probably leads to the formation of a slow outflowing disk. The material in this slow wind is enriched in H-burning products and presents abundance patterns similar to the chemical anomalies observed in globular cluster stars. In particular, the C, N, O, Na and Li variations are well reproduced by our model. However the rate of the $\rm{}^{24}\kern-0.6ptMg$$(p,\gamma)$ has to be increased by a factor 1000 around 50 $\times$ 10 6  K in order to reproduce the amplitude of the observed Mg-Al anticorrelation. We discuss how the long-lived low-mass stars currently observed in globular clusters could have formed out of the slow wind material ejected by massive stars.

[1]  P. Ventura,et al.  Does the oxygen-sodium anticorrelation in globular clusters require a lowering of the $\mathsf{^{23}}$Na(p,$\mathsf{\alpha)^{20}}$Ne reaction rate? , 2006 .

[2]  N. Prantzos,et al.  On the self-enrichment scenario of galactic globular clusters: constraints on the IMF , 2006, astro-ph/0606112.

[3]  G. Meynet,et al.  On the origin of the high helium sequence in ω Centauri , 2006, astro-ph/0601425.

[4]  D. Lennon,et al.  B-type supergiants in the Small Magellanic Cloud: rotational velocities and implications for evolutionary models , 2005, astro-ph/0511758.

[5]  P. Ventura,et al.  Toward a Working Model for the Abundance Variations in Stars within Globular Clusters , 2005, astro-ph/0511603.

[6]  K. Gayley,et al.  The Nature and Evolution of Disks Around Hot Stars , 2005 .

[7]  W. Aoki,et al.  Mg Isotope Ratios in Giant Stars of the Globular Clusters M13 and M71 , 2005, astro-ph/0510591.

[8]  D. Gies,et al.  Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions , 2005, astro-ph/0510450.

[9]  R. Gratton,et al.  Li in NGC 6752 and the formation of globular clusters , 2005, astro-ph/0506651.

[10]  P. D’Antona Full computation of massive AGB evolution. II. The role of mass loss and cross-sections , 2005, astro-ph/0505221.

[11]  I. Ivans,et al.  Manganese Abundances in Cluster and Field Stars , 2005, Proceedings of the International Astronomical Union.

[12]  Jennifer A. Johnson,et al.  Abundances in giant stars of the globular cluster NGC 6752 , 2005, astro-ph/0504283.

[13]  S. Lucatello,et al.  Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc , 2004, astro-ph/0411241.

[14]  P. Ventura,et al.  Full computation of massive AGB evolution. I. The large impact of convection on nucleosynthesis , 2004, astro-ph/0411191.

[15]  S. Wolff,et al.  B Star Rotational Velocities in h and χ Persei: A Probe of Initial Conditions during the Star Formation Epoch? , 2004, astro-ph/0410337.

[16]  C. Iliadis,et al.  Investigation of the Na-23(p, gamma) Mg-24 and Na-23(p, alpha) Ne-20 reactions via (He-3, d) spectroscopy , 2004 .

[17]  France.,et al.  Heavy elements and chemical enrichment in globular clusters , 2004, astro-ph/0408330.

[18]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[19]  F. Herwig Evolution and Yields of Extremely Metal-poor Intermediate-Mass Stars , 2004, astro-ph/0407592.

[20]  J. Lattanzio,et al.  Modelling self-pollution of globular clusters from AGB stars , 2004, astro-ph/0406360.

[21]  C. Cacciari,et al.  Star-to-Star Na and O Abundance Variations along the Red Giant Branch in NGC 2808 , 2004, astro-ph/0406119.

[22]  F. Herwig Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity , 2003, astro-ph/0312616.

[23]  I. Howarth,et al.  Be-star rotation: how close to critical? , 2003, astro-ph/0312113.

[24]  S. Lucatello,et al.  Heavy elements abundances in turn-off stars and early subgiants in NGC 6752 , 2003, astro-ph/0311278.

[25]  J. Porter,et al.  Classical Be Stars , 2003, 1310.3962.

[26]  A. Coc,et al.  Updated Big Bang nucleosynthesis confronted to WMAP observations and to the abundance of light elements , 2003, astro-ph/0309480.

[27]  J. Lattanzio,et al.  Production of Aluminium and the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars , 2003, Publications of the Astronomical Society of Australia.

[28]  H. Yorke,et al.  Massive Stars and the Energy Balance of the Interstellar Medium. I. The Impact of an Isolated 60 M☉ Star , 2003, astro-ph/0306541.

[29]  F. Herwig,et al.  The Abundance Evolution of Oxygen, Sodium, and Magnesium in Extremely Metal Poor Intermediate-Mass Stars: Implications for the Self-Pollution Scenario in Globular Clusters , 2003, astro-ph/0305494.

[30]  F. Grundahl,et al.  Mg isotopic ratios in giant stars of the globular cluster NGC 6752 , 2003, astro-ph/0303057.

[31]  E. Grebel,et al.  CN Abundance Variations on the Main Sequence of 47 Tucanae , 2002, astro-ph/0210364.

[32]  S. Ramírez,et al.  Abundances in Stars from the Red Giant Branch Tip to near the Main-Sequence Turnoff in M5 , 2002, astro-ph/0210245.

[33]  P. Ventura,et al.  Yields from low metallicity, intermediate mass AGB stars:. Their role for the CNO and lithium abundances in Globular Cluster stars , 2002 .

[34]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[35]  F. Grundahl,et al.  Abundances of RGB stars in NGC 6752 , 2002 .

[36]  Judith G. Cohen,et al.  Carbon and Nitrogen Abundances in Stars at the Base of the Red Giant Branch in M5 , 2001, astro-ph/0112199.

[37]  S. Ramírez,et al.  Abundances in Stars from the Red Giant Branch Tip to Near the Main-Sequence Turnoff in M71. III. Abundance Ratios , 2001, astro-ph/0111572.

[38]  G. Meynet,et al.  Stellar evolution with rotation. VII. - Low metallicity models and the blue to red supergiant ratio in the SMC , 2001, astro-ph/0105051.

[39]  W. J. Thompson,et al.  Proton-induced Thermonuclear Reaction Rates for A = 20–40 Nuclei , 2001 .

[40]  Paolo Ventura,et al.  Predictions for Self-Pollution in Globular Cluster Stars , 2001 .

[41]  S. Lucatello,et al.  The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters , 2000, astro-ph/0012457.

[42]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[43]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. II. Evolution of the Surface Properties , 2000, astro-ph/0005110.

[44]  C. Iliadis,et al.  Reaction rate of 24Mg(p,γ)25Al , 1999 .

[45]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[46]  V. Smith,et al.  Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4 , 1999, astro-ph/9905370.

[47]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[48]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[49]  R. P. Kraft ABUNDANCE DIFFERENCES AMONG GLOBULAR CLUSTER GIANTS: PRIMORDIAL VS. EVOLUTIONARY SCENARIOS , 1994 .

[50]  R. Bell Low Temperature Rosseland Opacities , 1993 .

[51]  G. Wallerstein,et al.  High resolution CCD spectra of stars in globular clusters. VIII: The self-enrichment history of Omega Centauri , 1993 .

[52]  R. J. Dickens,et al.  Evidence from stellar abundances for a large age difference between two globular clusters , 1991, Nature.

[53]  J. Oke,et al.  Addendum - High Resoultion CCD Spectra of Stars in Globular Clusters - Part Three - m4 M13 and M22 , 1987 .

[54]  Graeme H. Smith,et al.  THE CHEMICAL INHOMEGENEITY OF GLOBULAR CLUSTERS. , 1987 .

[55]  K. Freeman,et al.  The Chemical Composition, Structure, and Dynamics of Globular Clusters , 1981 .

[56]  G. Costa,et al.  Correlated cyanogen and sodium anomalies in the globular clusters 47 Tuc and NGC 6752 , 1981 .

[57]  E. Rossetti,et al.  I. First detection of large variations in sodium abundances along the Red Giant Branch , 2008 .

[58]  S. Talon Rotational Transport Processes , 2004 .

[59]  K. Nomoto,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj BIPOLAR SUPERNOVA EXPLOSIONS: NUCLEOSYNTHESIS & IMPLICATION ON ABUNDANCES IN EXTREMELY METAL-POOR STARS , 2003 .

[60]  J. E. Pringle,et al.  to appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 11/12/01 THE UNIQUE HISTORY OF THE GLOBULAR CLUSTER ω CENTAURI , 2002 .

[61]  Andre Maeder,et al.  Stellar Evolution with Rotation , 2000 .

[62]  M. Shetrone Magnesium and carbon isotopes in globular cluster giants. Tests of deep mixing. II , 1996 .

[63]  C. Sneden,et al.  Oxygen abundances in halo giants. II : Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field , 1992 .

[64]  S. Anand,et al.  STRUCTURE AND EVOLUTION OF RAPIDLY ROTATING B-TYPE STARS. , 1968 .