Stochastic geometry from the standpoint of integral geometry

This two-part paper surveys some recent developments in integral and stochastic geometry. Part I surveys applications of integral geometry to the theory of euclidean motion-invariant random fibrefields (a fibrefield is a collection of smooth arcs on the plane), involving marked point processes, Palm distribution theory and vertex pattern analysis. Part II develops the more sophisticated theory of Buffon sets in stochastic geometry and the characterisation of measures of lines, giving applications to problems concerning random triangles and colourings, line processes and fixed convex sets.