A stable explicitly solvable numerical method for the Riesz fractional advection-dispersion equations

In this paper, we present a finite difference scheme for solving the Riesz fractional advection-dispersion equations (RFADEs). The scheme is obtained by using asymmetric discretization technique and modify the shifted Grunwald approximation to fractional derivative. By calculating the unknowns in differential nodal-point sequences at the odd and even time-levels, the discrete solution of the scheme can be obtained explicitly. The computational cost for the scheme at each time step can be O(KlogK) by using the fast matrix-vector multiplication with the help of Toeplitz structure, where K is the number of unknowns. We prove that the scheme is solvable and unconditionally stable. We derive the error estimates in discrete l2-norm, which is optimal in some cases. Numerical examples are presented to verify our theoretical results.

[1]  Peter Richmond,et al.  Waiting time distributions in financial markets , 2002 .

[2]  David A. Benson,et al.  Subordinated advection‐dispersion equation for contaminant transport , 2001 .

[3]  X. Li,et al.  Existence and Uniqueness of the Weak Solution of the Space-Time Fractional Diffusion Equation and a Spectral Method Approximation , 2010 .

[4]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[5]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[6]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[7]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[8]  D. J. Evans,et al.  Group explicit methods for parabolic equations , 1983 .

[9]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[10]  Fawang Liu,et al.  High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation , 2015, J. Comput. Appl. Math..

[11]  Alternating difference block methods and their difference graphs , 1998 .

[12]  Yufeng Nie,et al.  A numerical approach for the Riesz space-fractional Fisher' equation in two-dimensions , 2017, Int. J. Comput. Math..

[13]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[14]  Fawang Liu,et al.  A finite volume method for solving the two-sided time-space fractional advection-dispersion equation , 2012 .

[15]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[16]  Yu-xin Zhang,et al.  New numerical methods for the Riesz space fractional partial differential equations , 2012, Comput. Math. Appl..

[17]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[18]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[19]  Talaat S. El-Danaf,et al.  Computational method for solving space fractional Fisher's nonlinear equation , 2014 .

[20]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[21]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[22]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[23]  Chuanju Xu,et al.  Spectral Optimization Methods for the Time Fractional Diffusion Inverse Problem , 2013 .

[24]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[25]  J. Kirchner,et al.  Fractal stream chemistry and its implications for contaminant transport in catchments , 2000, Nature.

[26]  H. Rui,et al.  Uniformly Stable Explicitly Solvable Finite Difference Method for Fractional Diffusion Equations , 2015 .

[27]  S. Momani,et al.  A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula , 2008 .

[28]  D. Benson,et al.  Operator Lévy motion and multiscaling anomalous diffusion. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Fawang Liu,et al.  The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation , 2008 .

[30]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[31]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[32]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[33]  Fawang Liu,et al.  Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation , 2015, Appl. Math. Comput..

[34]  Fawang Liu,et al.  A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain , 2015, J. Comput. Phys..

[35]  H. Bethe,et al.  Enrico Fermi in Rome, 1931–32 , 2002 .

[36]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[37]  Zhang Bao-Lin Difference Graphs of Block ADI Method , 2000 .

[38]  Fawang Liu,et al.  Stability and convergence of a finite volume method for the space fractional advection-dispersion equation , 2014, J. Comput. Appl. Math..