Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

[1]  Claudio Shyinti Kiminami,et al.  Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting , 2016 .

[2]  Claudio Shyinti Kiminami,et al.  Phase Formation, Thermal Stability and Mechanical Properties of a Cu-Al-Ni-Mn Shape Memory Alloy Prepared by Selective Laser Melting , 2015 .

[3]  Paul D. Schmitt,et al.  Parts per Million Powder X-ray Diffraction. , 2015, Analytical chemistry.

[4]  P. Gargarella,et al.  Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu-Al-Ni-Mn shape memory alloy , 2015 .

[5]  E. Hamzah,et al.  Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys , 2015, Metallurgical and Materials Transactions A.

[6]  H. Maier,et al.  Martensite aging – Avenue to new high temperature shape memory alloys , 2015 .

[7]  R. Dasgupta,et al.  Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys , 2015 .

[8]  P. Gargarella,et al.  Spray forming of Cu–11.85Al–3.2Ni–3Mn (wt%) shape memory alloy , 2014 .

[9]  Claudio Shyinti Kiminami,et al.  Atomization and Selective Laser Melting of a Cu-Al-Ni-Mn Shape Memory Alloy , 2014 .

[10]  Carolin Körner,et al.  Defect generation and propagation mechanism during additive manufacturing by selective beam melting , 2014 .

[11]  Jean-Pierre Kruth,et al.  Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts , 2014 .

[12]  Florian Pyczak,et al.  Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy , 2014 .

[13]  Bert Müller,et al.  Microstructure of selective laser melted nickel–titanium , 2014 .

[14]  J. Eckert,et al.  Microstructural Evolution and Mechanical Behaviour of Metastable Cu–Zr–Co Alloys , 2014 .

[15]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[16]  Mariana Calin,et al.  Manufacture by selective laser melting and mechanical behavior of commercially pure titanium , 2014 .

[17]  G. Lojen,et al.  Continuously cast Cu–Al–Ni shape memory alloy – Properties in as-cast condition , 2013 .

[18]  Christian Coddet,et al.  Microstructure and Transformation Behavior of in-situ Shape Memory Alloys by Selective Laser Melting Ti–Ni Mixed Powder , 2013 .

[19]  J. Kruth,et al.  Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder , 2013 .

[20]  Bert Müller,et al.  Tailoring Selective Laser Melting Process Parameters for NiTi Implants , 2012, Journal of Materials Engineering and Performance.

[21]  G. Cheng,et al.  Bimodal Nanocrystallization of NiTi Shape Memory Alloy by Laser Shock Peening and Post-deformation Annealing , 2011 .

[22]  Andrey V. Gusarov,et al.  Single track formation in selective laser melting of metal powders , 2010 .

[23]  U. Sarı Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys , 2010 .

[24]  K. Ishida,et al.  Ductile Cu–Al–Mn based shape memory alloys: General properties and applications , 2008 .

[25]  Yong-qiang Yang,et al.  Direct manufacturing of Cu-based alloy parts by selective laser melting , 2007 .

[26]  J. Pérez-Landazábal,et al.  Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys , 2004 .

[27]  Toshihiro Omori,et al.  Characteristics of Cu–Al–Mn-based shape memory alloys and their applications , 2004 .

[28]  Christopher J. Sutcliffe,et al.  The production of copper parts using DMLR , 2003 .

[29]  E. Cesari,et al.  Thermomechanical cycling in Cu–Al–Ni-based melt-spun shape-memory ribbons , 2003 .

[30]  Xiaobing Ren,et al.  Mechanism of martensite aging effects and new aspects , 2001 .

[31]  J. Dutkiewicz,et al.  Effect of titanium on structure and martensic transformation in rapidly solidified Cu–Al–Ni–Mn–Ti alloys , 1999 .

[32]  J. Lelątko,et al.  Structure and properties of melt-spun Cu–Al–Ni shape memory alloys , 1999 .

[33]  J. Lai,et al.  Microstructural studies of a Cu-Zn-Al shape-memory alloy with manganese and zirconium addition , 1998 .

[34]  H. Peng,et al.  High resolution electron microscopy studies of martensite around Xs precipitates in a CuAlNiMnTi shape memory alloy , 1997 .

[35]  J. Humbeeck,et al.  Effect of χ-Phase Precipitation on Elastic Modulus of Cu–Al–Ni–(Ti)–(Mn) Shape Memory Alloys , 1996 .

[36]  J. Dutkiewicz,et al.  RESPONSE OF Cu-AL-Mn ALLOYS TO AGEING IN β PHASE , 1991 .

[37]  J. Humbeeck,et al.  Phenomenological Approach to the Coexistence of Two Types of Martensites in Cu–Zn–Al–Mn Alloys , 1991 .

[38]  M. Chandrasekaran,et al.  Effect of Quenching Rate on the Structure and Transformation Characteristics of a Cu-Al-Ni-Mn-Ti Shape Memory Alloy , 1991 .

[39]  G. Guénin,et al.  Thermal aging behaviour and origin of a CuAlNi shape memory alloy , 1990 .

[40]  C. M. Wayman,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[41]  H. Morawiec,et al.  Grain Refinement of Cu-Zn-Al Shape Memory Alloys / Kornfeinung von Cu-Zn-Al-Formgedächtnislegierungen , 1990 .

[42]  K. Shimizu,et al.  Effect of Heat Treatments on Thermally Formed Martensite Phases in Monocrystalline Cu–Al–Ni Shape Memory Alloy , 1989 .

[43]  M. Chandrasekaran,et al.  The Influence of Post Quench Againg in the Beta-phase on the Transformation Characteristics and the Physical and Mechanical Properties of Martensite in a Cu–Al–Ni Shape Memory Alloy , 1989 .

[44]  K. Adachi,et al.  Formation of X Phases and Origin of Grain Refinement Effect in Cu–Al–Ni Shape Memory Alloys Added with Titamium , 1989 .

[45]  L. C. Brown,et al.  Preparation and properties of fine grain β- CuAlNi strain- memory alloys , 1988 .

[46]  J. Humbeeck,et al.  Grain refinement of Cu–Zn–Al and Cu–Al–Ni by Ti addition , 1988 .

[47]  V. Agafonov,et al.  Influence of the aluminium content on the appearance and stability of martensites in the Cu Al Ni system , 1988 .

[48]  J. Humbeeck,et al.  A Two-Stage Martensite Transformation in a Cu-13.99 mass% Al-3.5 mass% Ni Alloy , 1987 .

[49]  K. Adachi,et al.  Crystal structure of the X-phase in grain-refined CuAlNiTi shape memory alloys , 1987 .

[50]  C. M. Wayman,et al.  Grain refinement of CuZnAl shape memory alloys , 1986 .

[51]  J. Humbeeck,et al.  Grain-refinement during solidification of beta-cu based alloys , 1986 .

[52]  L. C. Brown,et al.  The mechanical properties of grain refined β- cuaini strain-memory alloys , 1984 .

[53]  R. Blinc,et al.  13C NMR study of molecular ordering in a discotic columnar mesophase , 1982 .

[54]  K. Shimizu,et al.  Structure analysis of stress-induced β1 martensite in a Cu-Al-Ni alloy by neutron diffraction , 1979 .

[55]  H. Warlimont,et al.  The electron-metallography and crystallography of copper-aluminum martensites , 1963 .

[56]  Michael Schmidt,et al.  Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed , 2014 .

[57]  Mihai Stoica,et al.  Processing metallic glasses by selective laser melting , 2013 .

[58]  Igor Shishkovsky,et al.  Direct Selective Laser Melting of Nitinol Powder , 2012 .

[59]  Igor Smurov,et al.  Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape , 2010 .

[60]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[61]  Ming H. Wu,et al.  Cu-Based Shape Memory Alloys , 1990 .

[62]  K. Sugimoto,et al.  Cu-AI-Ni-Mn: A New Shape Memory Alloy for High Temperature Applications , 1990 .

[63]  C. M. Wayman,et al.  Grain Refinement of a Cu–Al–Ni Shape Memory Alloy by Ti and Zr Additions , 1986 .

[64]  A. Miodownik,et al.  Aging effects in copper-based shape-memory alloys , 1980 .