Redundancy and computational efficiency in Cartesian genetic programming

The graph-based Cartesian genetic programming system has an unusual genotype representation with a number of advantageous properties. It has a form of redundancy whose role has received little attention in the published literature. The representation has genes that can be activated or deactivated by mutation operators during evolution. It has been demonstrated that this "junk" has a useful role and is very beneficial in evolutionary search. The results presented demonstrate the role of mutation and genotype length in the evolvability of the representation. It is found that the most evolvable representations occur when the genotype is extremely large and in which over 95% of the genes are inactive.

[1]  Riccardo Poli,et al.  Evolution of Graph-Like Programs with Parallel Distributed Genetic Programming , 1997, ICGA.

[2]  Julian Francis Miller,et al.  Evolution of Digital Filters Using a Gate Array Model , 1999, EvoWorkshops.

[3]  Riccardo Poli,et al.  Why Ants are Hard , 1998 .

[4]  William B. Langdon,et al.  Some Considerations on the Reason for Bloat , 2002, Genetic Programming and Evolvable Machines.

[5]  P. Nordin,et al.  Explicitly defined introns and destructive crossover in genetic programming , 1996 .

[6]  W. Langdon The evolution of size in variable length representations , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  Walter Alden Tackett,et al.  Recombination, selection, and the genetic construction of computer programs , 1994 .

[8]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[9]  Richard A. Watson,et al.  On the Utility of Redundant Encodings in Mutation-Based Evolutionary Search , 2002, PPSN.

[10]  N. Hopper,et al.  Analysis of genetic diversity through population history , 1999 .

[11]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[12]  J. Miller,et al.  15 – Evolving the program for a cell: from French flags to Boolean circuits , 2003 .

[13]  Riccardo Poli,et al.  Fitness Causes Bloat: Mutation , 1997, EuroGP.

[14]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[15]  Justinian Rosca,et al.  Generality versus size in genetic programming , 1996 .

[16]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[17]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[18]  Annie S. Wu,et al.  Empirical Studies of the Genetic Algorithm with Noncoding Segments , 1995, Evolutionary Computation.

[19]  M. S. Voss,et al.  Social programming using functional swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[20]  Julian Francis Miller,et al.  Evolution and Acquisition of Modules in Cartesian Genetic Programming , 2004, EuroGP.

[21]  L. Altenberg EMERGENT PHENOMENA IN GENETIC PROGRAMMING , 1994 .

[22]  Tughrul Arslan,et al.  Evolvable Components—From Theory to Hardware Implementations , 2005, Genetic Programming and Evolvable Machines.

[23]  Marc Ebner,et al.  On neutral networks and evolvability , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[24]  Julian F. Miller,et al.  Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study , 2007 .

[25]  Julian F. Miller,et al.  Cartesian Genetic Programming and the Post Docking Filtering Problem , 2005 .

[26]  Sean Luke,et al.  Code Growth Is Not Caused by Introns , 2000 .

[27]  Terence Soule,et al.  An Analysis of the Causes of Code Growth in Genetic Programming , 2002, Genetic Programming and Evolvable Machines.

[28]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[29]  William B. Langdon,et al.  Quadratic Bloat in Genetic Programming , 2000, GECCO.

[30]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Franz Rothlauf,et al.  Redundant Representations in Evolutionary Computation , 2003, Evolutionary Computation.

[32]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[33]  Julian Francis Miller,et al.  The Advantages of Landscape Neutrality in Digital Circuit Evolution , 2000, ICES.

[34]  Julian Francis Miller,et al.  Studying the Emergence of Multicellularity with Cartesian Genetic Programming in Artificial Life , 2002, GECCO Late Breaking Papers.

[35]  Julian Francis Miller,et al.  Cartesian genetic programming , 2000, GECCO '10.

[36]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[37]  Julian F. Miller,et al.  What bloat? Cartesian Genetic Programming on Boolean problems , 2003 .

[38]  Julian Francis Miller,et al.  Adaptivity in cell based optimization for information ecosystems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[39]  Julian Francis Miller,et al.  A Developmental Method for Growing Graphs and Circuits , 2003, ICES.

[40]  Szilveszter Juhos,et al.  Post Docking Filtering Using Cartesian Genetic Programming , 2003, Artificial Evolution.

[41]  Annie S. Wu,et al.  Putting More Genetics into Genetic Algorithms , 1998, Evolutionary Computation.

[42]  J. Miller An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach , 1999 .

[43]  Terence Soule,et al.  Code growth in genetic programming , 1996 .

[44]  Julian Francis Miller,et al.  Neutrality and the Evolvability of Boolean Function Landscape , 2001, EuroGP.

[45]  Riccardo Poli,et al.  The evolution of size and shape , 1999 .

[46]  Julian Francis Miller,et al.  Finding Needles in Haystacks Is Not Hard with Neutrality , 2002, EuroGP.

[47]  Nicholas Freitag McPhee,et al.  Accurate Replication in Genetic Programming , 1995, ICGA.

[48]  Julian Francis Miller,et al.  Evolving Developmental Programs for Adaptation, Morphogenesis, and Self-Repair , 2003, ECAL.

[49]  Lothar Thiele,et al.  Genetic Programming and Redundancy , 1994 .

[50]  P. Smith,et al.  Code growth, explicitly defined introns, and alternative selection schemes. , 1998, Evolutionary computation.

[51]  Wolfgang Banzhaf,et al.  Genotype-Phenotype-Mapping and Neutral Variation - A Case Study in Genetic Programming , 1994, PPSN.

[52]  L. Barnett Ruggedness and neutrality—the NKp family of fitness landscapes , 1998 .

[53]  Peter Nordin,et al.  A compiling genetic programming system that directly manipulates the machine-code , 1994 .

[54]  M. Huynen Exploring phenotype space through neutral evolution , 1996, Journal of Molecular Evolution.