A mesh-independence result for semismooth Newton methods

Abstract.For a class of semismooth operator equations a mesh independence result for generalized Newton methods is established. The main result states that the continuous and the discrete Newton process, when initialized properly, converge q-linearly with the same rate. The problem class considered in the paper includes MCP-function based reformulations of first order conditions of a class of control constrained optimal control problems for partial differential equations for which a numerical validation of the theoretical results is given.

[1]  Xiaojun Chen,et al.  Convergence of Newton's Method for Singular Smooth and Nonsmooth Equations Using Adaptive Outer Inverses , 1997, SIAM J. Optim..

[2]  D. G. Figueiredo,et al.  Lectures on the ekeland variational principle with applications and detours , 1989 .

[3]  Bernd Kummer,et al.  Generalized Newton and NCP-methods: convergence, regularity, actions , 2000 .

[4]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[5]  E. Allgower,et al.  A mesh-independence principle for operator equations and their discretizations , 1986 .

[6]  Michael Ulbrich,et al.  On a Nonsmooth Newton Method for Nonlinear Complementarity Problems in Function Space with Applications to Optimal Control , 2000 .

[7]  F. Facchinei,et al.  A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities , 1999 .

[8]  Stefan Ulbrich,et al.  Superlinear Convergence of Affine-Scaling Interior-Point Newton Methods for Infinite-Dimensional Nonlinear Problems with Pointwise Bounds , 2000, SIAM J. Control. Optim..

[9]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[10]  S. M. Robinson Newton's method for a class of nonsmooth functions , 1994 .

[11]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[12]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[13]  Stefan Volkwein,et al.  Mesh-Independence for an Augmented Lagrangian-SQP Method in Hilbert Spaces , 2000, SIAM J. Control. Optim..

[14]  C. Kelley,et al.  Mesh independence of the gradient projection method for optimal control problems , 1992 .

[15]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[16]  S. Singh Nonlinear Functional Analysis and Its Applications , 1986 .

[17]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[18]  William W. Hager,et al.  Uniform Convergence and Mesh Independence of Newton's Method for Discretized Variational Problems , 2000, SIAM J. Control. Optim..

[19]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[20]  M. Ulbrich Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in , 2001 .

[21]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[22]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[23]  Ioannis K. Argyros,et al.  A mesh-independence principle for nonlinear operator equations and their discretizations under mild differentiability conditions , 1990, Computing.

[24]  F. Potra,et al.  Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem , 1992 .