Zn and Cr abundances in damped Lyman alpha systems from the CORALS survey

We present metal abundances in 15 damped Lyα systems (DLAs) from the Complete Optical and Radio Absorption Line System (CORALS) survey, designed to be free from any biasing effects due to extinction of QSOs by dust in intervening absorbers. It has long been suggested that such biasing may explain differences in metallicity between damped Lyα systems and coeval luminous galaxies, and between model predictions and observations. We use our measured zinc and chromium abundances (combined with those for five more CORALS DLAs from the literature, giving us a very nearly complete sample) to test whether the metallicity and degree of dust depletion in CORALS DLAs are significantly different from those of existing, larger, samples of DLAs drawn from magnitude limited, optical surveys. We find that the column density weighted metallicity of CORALS DLAs, (� (Zn/H)DLA� ) = −0.88 ± 0.21 in the redshift interval 1.86 < zabs < 3.45, is only marginally higher than that of a control sample from the by Kulkarni et al., (� (Zn/H)DLA� ) = −1.09 ± 0.10. With the present limited statistics this difference is not highly significant. Furthermore, we find no evidence for increased dust depletions in CORALS DLAs - their (Cr/Zn) ratios conform to the known trend of increasing depletion (decreasing (Cr/Zn)) with increasing metallicity, and we have encountered no cases where Cr is as depleted as in local cold interstellar clouds. These results, when combined with the earlier findings of the CORALS survey reported by Ellison et al. in 2001, make it difficult to invoke a dust-induced bias to explain the generally low level of chemical evolution exhibited by most DLAs. Rather, they indicate that large scale optical QSO surveys give a fair census of the population of high redshift absorbers.

[1]  Lisa J. Storrie-LombardiArthur M. Wolfe Surveys for z>3 Damped Lyman-alpha Absorption Systems , 2000 .

[2]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[3]  K. Jahnke,et al.  Abundances and kinematics of a candidate sub-damped Lymanα galaxy toward PHL 1226 , 2004, astro-ph/0409372.

[4]  S. Ellison,et al.  The Number Density of 0.6 < z < 1.7 Mg II Systems from CORALS: Observational Biases at Intermediate Redshift , 2004, astro-ph/0407237.

[5]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. II. The Implications , 2001, astro-ph/0110351.

[6]  J. Lawler,et al.  Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II , 1993 .

[7]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[8]  M. Pettini,et al.  Damped Lyman α systems and disc galaxies: number density, column density distribution and gas density , 2003 .

[9]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[10]  S. M. Fall,et al.  Hubble Space Telescope Observations of Element Abundances in Low-Redshift Damped Lyα Galaxies and Implications for the Global Metallicity-Redshift Relation* , 2004, astro-ph/0409234.

[11]  Low-Redshift Damped Lyα Galaxies toward the Quasars B2 0827+243, PKS 0952+179, PKS 1127–145, and PKS 1629+120* , 2002, astro-ph/0211297.

[12]  M. Pettini Element Abundances through the Cosmic Ages , 2003, astro-ph/0303272.

[13]  J. Prochaska,et al.  Metallicity Evolution of Damped Lyα Systems in ΛCDM Cosmology , 2002, astro-ph/0203524.

[14]  C. Steidel,et al.  Metal Abundances at z < 1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems , 1998, astro-ph/9808017.

[15]  S. M. Fall,et al.  Confirmation of Dust in Damped Lyman-Alpha Systems , 1991 .

[16]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[17]  Max Pettini,et al.  The Metallicity of High-Redshift Galaxies: The Abundance of Zinc in 34 Damped Lyα Systems from z = 0.7 to 3.4 , 1997 .

[18]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[19]  Volker Springel,et al.  Star formation rate and metallicity of damped Lyman α absorbers in cosmological smoothed particle hydrodynamics simulations , 2003, astro-ph/0305409.

[20]  R. Latta,et al.  A Monte Carlo Study of Some Two-Sample Rank Tests with Censored Data , 1981 .

[21]  Mark Swinbank,et al.  The Rest-Frame Optical Spectra of SCUBA Galaxies , 2004, astro-ph/0412050.

[22]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[23]  D. Turnshek,et al.  Discovery of DampedLyα Systems at Redshifts Less than 1.65 and Results on Their Incidence and Cosmological Mass Density , 1999, astro-ph/9909164.

[24]  Emission-line abundances of absorption-selected galaxies at z < 0.5 , 2004, astro-ph/0411767.

[25]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[26]  J. Prochaska The Chemical Uniformity of High-z Damped Lyα Protogalaxies , 2002, astro-ph/0209193.

[27]  D. York,et al.  Element abundances at high redshift , 1989 .

[28]  R. Jimenez The Epoch of Galaxy Formation , 2001, astro-ph/0110232.

[29]  Wolfe,et al.  Metallicity Evolution in the Early Universe. , 2000, The Astrophysical journal.

[30]  S. M. Fall,et al.  Obscuration of quasars by dust in damped Lyman-alpha systems , 1993 .

[31]  Linda J. Smith,et al.  Metal Enrichment, Dust, and Star Formation in Galaxies at High Redshifts. III. Zn and CR Abundances for 17 Damped Lyman-Alpha Systems , 1994 .

[32]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[33]  Abundance Profiles and Kinematics of Damped Lyα Absorbing Galaxies at z < 0.65* ** *** , 2004, astro-ph/0411006.

[34]  Dust obscuration studies along quasar sight-lines using simulated galaxies , 2003, astro-ph/0310464.

[35]  I. Hook,et al.  The Parkes quarter-Jansky flat-spectrum sample. 2. New optical spectra and redshift measurements , 2002, astro-ph/0212386.

[36]  Lisa J. Storrie-Lombardi,et al.  Surveys for z > 3 Damped Lyα Absorption Systems: The Evolution of Neutral Gas , 2000 .

[37]  C. Esteban,et al.  Cosmochemistry The Melting Pot of the Elements: Frontmatter , 2004 .

[38]  A. Cimatti,et al.  Metal Enrichment in Near-Infrared Luminous Galaxies at z ~ 2: Signatures of Proto-elliptical Galaxies? , 2004, astro-ph/0404029.

[39]  L. Hobbs,et al.  A comparison of interstellar Na I, Ca II, and K I absorption , 1974 .

[40]  D. Turnshek,et al.  Low-Redshift Damped Lyman Alpha Galaxies Towards the Quasars B 2 0827 + 243 , PKS 0952 + 179 , PKS 1127 − 145 , and PKS 1629 + 120 1 , 2002 .

[41]  I. Hook,et al.  The Parkes quarter-Jansky flat-spectrum sample. I. Sample selection and source identifications , 2002 .

[42]  Early stages of Nitrogen enrichment in galaxies: Clues from measurements in damped Lyman alpha systems , 2003, astro-ph/0302032.

[43]  S. Ellison,et al.  Unusual metal abundances in a pair of damped Lyman alpha systems at z 2 , 2001, astro-ph/0110391.

[44]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[45]  S. M. Fall,et al.  Cosmic chemical evolution , 1995 .

[46]  I. Hook,et al.  The corals survey I: new estimates of the number density and gas content of damped lyman alpha systems free from dust bias , 2001, astro-ph/0109205.

[47]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[48]  Abundances of Metal-rich H II Regions in M51 , 2004, astro-ph/0407065.

[49]  J. Prochaska,et al.  Chemical Abundances of the Damped Lyα Systems at z > 1.5 , 1998, astro-ph/9810381.

[50]  University of Sydney,et al.  Dust in high redshift galaxies , 1997 .

[51]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. I. The Data , 2001, astro-ph/0110350.

[52]  S. M. Fall,et al.  The first detection of [O iii] emission from high-redshift damped Lyman-α galaxies , 2005 .

[53]  The early build-up of dust in galaxies: A study of damped Ly α systems , 2004, astro-ph/0403237.

[54]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[55]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[56]  D. York,et al.  Metals and Dust in Intermediate-Redshift Damped Lyα Galaxies , 2004, astro-ph/0408139.

[57]  Pasadena,et al.  The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers , 2001, astro-ph/0107045.

[58]  C. Foltz,et al.  The Large Bright QSO Survey for Damped LY alpha Absorption Systems , 1995 .

[59]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[60]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[61]  Dust‐reddening and gravitational lensing of SDSS QSOs due to foreground damped Lyman α systems , 2004, astro-ph/0405472.

[62]  The Nature of Damped Lyα Absorbing Galaxies at z ≤ 1: A Photometric Redshift Survey of Damped Lyα Absorbers* , 2003, astro-ph/0308190.

[63]  J. Ostriker,et al.  Models of the quasar population. II - The effects of dust obscuration , 1988 .

[64]  César Esteban,et al.  Cosmochemistry The Melting Pot of the Elements: Preface , 2004 .

[65]  R. Hunstead,et al.  Metal enrichment, dust, and star formation in galaxies at high redshifts. I: The z=2.3091 absorber toward PHL 957 , 1990 .

[66]  N. Prantzos,et al.  Metallicity in damped Lyman-α systems: evolution or bias? , 2000, astro-ph/0001313.

[67]  Ross D. Cohen,et al.  Damped Lyman-Alpha Absorption by Disk Galaxies with Large Redshifts. I. The Lick Survey , 1986 .

[68]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.