On the Pitfalls of Nested Monte Carlo

There is an increasing interest in estimating expectations outside of the classical inference framework, such as for models expressed as probabilistic programs. Many of these contexts call for some form of nested inference to be applied. In this paper, we analyse the behaviour of nested Monte Carlo (NMC) schemes, for which classical convergence proofs are insufficient. We give conditions under which NMC will converge, establish a rate of convergence, and provide empirical data that suggests that this rate is observable in practice. Finally, we prove that general-purpose nested inference schemes are inherently biased. Our results serve to warn of the dangers associated with naive composition of inference and models.

[1]  Fredrik Lindsten,et al.  Interacting Particle Markov Chain Monte Carlo , 2016, ICML.

[2]  A. Pfeffer,et al.  Figaro : An Object-Oriented Probabilistic Programming Language , 2009 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[5]  C. Andrieu,et al.  Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  Noah D. Goodman,et al.  Practical optimal experiment design with probabilistic programs , 2016, ArXiv.

[8]  W. Gilks Markov Chain Monte Carlo , 2005 .

[9]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[10]  Yves F. Atchad'e,et al.  On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods , 2013, 1306.4032.

[11]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[12]  Daniel M. Roy,et al.  CONVERGENCE OF SEQUENTIAL MONTE CARLO-BASED SAMPLING METHODS , 2015 .

[13]  Fredrik Lindsten,et al.  Pseudo-Marginal Hamiltonian Monte Carlo , 2016, J. Mach. Learn. Res..

[14]  Frank D. Wood,et al.  A Compilation Target for Probabilistic Programming Languages , 2014, ICML.

[15]  Frank D. Wood,et al.  Bayesian Optimization for Probabilistic Programs , 2017, NIPS.

[16]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[17]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[18]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[19]  Zoubin Ghahramani,et al.  MCMC for Doubly-intractable Distributions , 2006, UAI.

[20]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[21]  Michael A. Osborne,et al.  Probabilistic Integration: A Role for Statisticians in Numerical Analysis? , 2015 .

[22]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[23]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.