Thermodynamic and kinetic modelling: creep resistant materials

Abstract The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase particles and coarsening of MX, M23C6 and Laves phase particles. The modelling provided new insight into the long term stability of new steels. Modelling of the detrimental precipitation of Z phase Cr(V,Nb)N is described, which points to new approaches in alloy development for higher temperatures. Predictions of interdiffusion between a MCrAlY coating and an IN738 bulk alloy by multicomponent diffusion calculations provide a highly versatile tool for life assessment of service exposed gas turbine components as well as for the development of improved coatings.

[1]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[2]  J. Hald,et al.  Grey‐scale conversion X‐ray mapping by EDS of multielement and multiphase layered microstructures , 2007, Journal of microscopy.

[3]  F. Abe Bainitic and martensitic creep-resistant steels , 2004 .

[4]  F. Castro,et al.  Interdiffusion in multiphase, Al-Co-Cr-Ni-Ti diffusion couples , 2004 .

[5]  Fujio Abe,et al.  Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions , 2003, Nature.

[6]  John Hald,et al.  Precipitate Stability in Creep Resistant Ferritic Steels-Experimental Investigations and Modelling , 2003 .

[7]  M. Hättestrand,et al.  Coarsening of precipitates in an advanced creep resistant 9% chromium steel—quantitative microscopy and simulations , 2002 .

[8]  L. Korcakova Microstructure evolution in high strength steel for power plant application: Microscopy and Modelling , 2002 .

[9]  J. Ågren,et al.  Applications of computational thermodynamics: Group 3: Application of computational thermodynamics to phase transformation nucleation and coarsening , 2000 .

[10]  Duu-Jong Lee,et al.  Relative Stability of Boiling on a Flat Plate: Effects of Heater Orientation , 1999 .

[11]  A. Strang,et al.  Z phase formation in martensitic 12CrMoVNb steel , 1996 .

[12]  A. Engström Interdiffusion in multiphase, Fe-Cr-Ni diffusion couples , 1995 .

[13]  L. Höglund,et al.  Computer simulation of diffusion in multiphase systems , 1994 .

[14]  L. Singheiser,et al.  Chemical compatibility of coated systems at high temperatures , 1990 .

[15]  Jan-Olof Andersson,et al.  Computer simulation of multicomponent diffusional transformations in steel , 1990 .

[16]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[17]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[18]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[19]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .