Regularity conditions characterizing Fenchel–Lagrange duality and Farkas-type results in DC infinite programming

Abstract In this paper, we consider a DC infinite programming problem ( P ) with inequality constraints. By using the properties of the epigraph of the conjugate functions, we introduce some new notions of regularity conditions for ( P ). Under these new regularity conditions, we completely characterize the Fenchel–Lagrange duality and the stable Fenchel–Lagrange duality for ( P ). Similarly, we also completely characterize the Farkas-type results and the stable Farkas-type results for ( P ). As applications, we obtain the corresponding results for conic programming problems.

[1]  N. Dinh,et al.  A closedness condition and its applications to DC programs with convex constraints , 2010 .

[2]  Sorin-Mihai Grad,et al.  On strong and total Lagrange duality for convex optimization problems , 2008 .

[3]  Regina Sandra Burachik,et al.  A new geometric condition for Fenchel's duality in infinite dimensional spaces , 2005, Math. Program..

[4]  Boris S. Mordukhovich,et al.  Subdifferentials of value functions and optimality conditions for DC and bilevel infinite and semi-infinite programs , 2010, Math. Program..

[5]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[6]  Juan Enrique Martínez-Legaz,et al.  Duality in D.C. Programming: The Case of Several D.C. Constraints , 1999 .

[7]  Shengjie Li,et al.  Duality and Farkas-type results for extended Ky Fan inequalities with DC functions , 2013, Optim. Lett..

[8]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[9]  Gert Wanka,et al.  A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces , 2006 .

[10]  R. Horst,et al.  DC Programming: Overview , 1999 .

[11]  Vaithilingam Jeyakumar Constraint Qualifications Characterizing Lagrangian Duality in Convex Optimization , 2008 .

[12]  Radu Ioan Bot,et al.  Some new Farkas-type results for inequality systems with DC functions , 2007, J. Glob. Optim..

[13]  Ioan Bogdan Hodrea,et al.  Farkas-type results for fractional programming problems☆ , 2007 .

[14]  Chong Li,et al.  Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming , 2010 .

[15]  Chong Li,et al.  Stable and Total Fenchel Duality for Convex Optimization Problems in Locally Convex Spaces , 2009, SIAM J. Optim..

[16]  Marco A. López,et al.  New Farkas-type constraint qualifications in convex infinite programming , 2007 .

[17]  Kung Fu Ng,et al.  Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming , 2009, SIAM J. Optim..

[18]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[19]  Vaithilingam Jeyakumar,et al.  Inequality systems and global optimization , 1996 .

[20]  Sorin-Mihai Grad,et al.  A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces , 2008 .

[21]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[22]  H. Tuy Convex analysis and global optimization , 1998 .

[23]  Sorin-Mihai Grad,et al.  New regularity conditions for strong and total Fenchel–Lagrange duality in infinite dimensional spaces , 2008 .

[24]  Vaithilingam Jeyakumar,et al.  Complete characterizations of stable Farkas’ lemma and cone-convex programming duality , 2008, Math. Program..

[25]  Le Thi Hoai An,et al.  A new efficient algorithm based on DC programming and DCA for clustering , 2007, J. Glob. Optim..

[26]  J. Toland Duality in nonconvex optimization , 1978 .

[27]  Marco A. López,et al.  Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities , 2008 .

[28]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[29]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[30]  Radu Ioan Bot,et al.  Farkas-Type Results With Conjugate Functions , 2005, SIAM J. Optim..