Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application

A thermomechanical model for a shape memory alloy (SMA) wire under uniaxial loading is implemented in a finite element framework, and simulation results are compared with mechanical and infrared experimental data. The constitutive model is a one–dimensional strain-gradient continuum model of an SMA wire element, including two internal field variables, possible unstable mechanical behavior, and the relevant thermomechanical couplings resulting from latent heat effects. The model is calibrated to recent and new experiments of typical commercially available polycrystalline NiTi wire. The shape memory effect and pseudoelastic behaviors are demonstrated numerically as a function of applied displacement rate and environmental parameters, and the results compare favorably to experimental data. The model is then used to simulate a simple SMA actuator device, and its performance is assessed for different thermal boundary conditions.

[1]  M. Schwartz Encyclopedia of smart materials , 2002 .

[2]  Inderjit Chopra,et al.  An Improved Shape Memory Alloy Actuator for Rotor Blade Tracking , 2003 .

[3]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[4]  Davide Bernardini,et al.  Models for one-variant shape memory materials based on dissipation functions , 2002 .

[5]  L. Truskinovsky,et al.  The origin of nucleation peak in transformational plasticity , 2004 .

[6]  Nicolas Triantafyllidis,et al.  Stability of crystalline solids—II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal , 2006 .

[7]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[8]  O. Heintze A Computationally Efficient Free Energy Model for Shape Memory Alloys - Experiments and Theory , 2004 .

[9]  J. Shaw,et al.  An experimental method to measure initiation events during unstable stress-induced martensitic transformation in a shape memory alloy wire , 2007 .

[10]  Thomas J. Pence,et al.  A Thermomechanical Model for a One Variant Shape Memory Material , 1994 .

[11]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[12]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[13]  Sanjay Govindjee,et al.  Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution , 2002 .

[14]  Friedrich K. Straub,et al.  Development of an SMA Actuator for In-flight Rotor Blade Tracking , 2004 .

[15]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[16]  Z. Q. Li,et al.  On Superelastic Deformation of NiTi Shape Memory Alloy Micro-Tubes and Wires — Band Nucleation and Propagation , 2001 .

[17]  G. Ravichandran,et al.  Three-dimensional rate-dependent crystal plasticity based on Runge–Kutta algorithms for update and consistent linearization , 2004 .

[18]  C. M. Wayman,et al.  Some stress- strain- temperature relationships for shape memory alloys , 1988 .

[19]  Brian Sanders,et al.  Aerodynamic Performance of the Smart Wing Control Effectors , 2004 .

[20]  Jeffrey D. Flamm,et al.  Shape memory alloy actuation for a variable area fan nozzle , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[21]  Landau theory for shape memory polycrystals , 2003, cond-mat/0309206.

[22]  T. Pence,et al.  Shape memory alloys: modeling , 2002 .

[23]  Y. Liu,et al.  Luders-like deformation associated with martensite reorientation in NiTi , 1998 .

[24]  Xiangyang Huang,et al.  Crystal structures and shape-memory behaviour of NiTi , 2003, Nature materials.

[25]  K. L. Ng,et al.  Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes , 2006 .

[26]  Stefan Seelecke,et al.  Thermodynamic aspects of shape memory alloys , 2001 .

[27]  J. Shaw,et al.  The Effect of Uniaxial Cyclic Deformation on the Evolution of Phase Transformation Fronts in Pseudoelastic NiTi Wire , 2001, Adaptive Structures and Material Systems.

[28]  John A. Shaw,et al.  An Experimental Setup for Measuring Unstable Thermo-Mechanical Behavior of Shape Memory Alloy Wire , 2002 .

[29]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[30]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[31]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[32]  Davide Bernardini,et al.  Shape‐Memory Materials, Modeling , 2002 .

[33]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[34]  Stelios Kyriakides,et al.  Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension , 1997 .

[35]  Stelios Kyriakides,et al.  On the nucleation and propagation of phase transformation fronts in a NiTi alloy , 1997 .

[36]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[37]  Z. Q. Li,et al.  The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension , 2002 .

[38]  T. Pence,et al.  Two Variant Modeling of Shape Memory Materials: Unfolding a Phase Diagram Triple Point , 1998 .

[39]  J. Ericksen,et al.  Introduction to the thermodynamics of solids , 1991 .

[40]  K. Ho,et al.  Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt , 1997 .

[41]  Dean L. Preston,et al.  Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model , 2005 .

[42]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[43]  H. Maier,et al.  Tensile deformation of NiTi wires. , 2005, Journal of biomedical materials research. Part A.

[44]  Ephrahim Garcia,et al.  Wind tunnel demonstration of the SAMPSON Smart Inlet , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[45]  Perry H Leo,et al.  Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires , 1993 .

[46]  John Yen,et al.  Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Airfoil , 2003 .

[47]  J. Shaw,et al.  Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy , 2004 .

[48]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[49]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .