Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-FDG PET.

UNLABELLED PET using 18F-FDG is a promising technique to monitor response in oncology. Unfortunately, a multitude of analytic methods is in use. To date, it is not clear whether simplified methods could replace complex quantitative methods in routine clinical practice. The aim of this study was to select those methods that would qualify for further assessment in a future prospective response-monitoring study by comparing results with patient outcome. METHODS Dynamic 18F-FDG PET scans were obtained on 2 groups of patients. First, 10 patients with advanced non-small cell lung cancer (NSCLC) were scanned on consecutive days before treatment to assess test-retest variability. Second, 30 scans were obtained on 19 patients with locally advanced NSCLC as part of an ongoing response-monitoring study. These scans were analyzed by 2 observers to assess observer variability. In addition, these studies were used to compare various methods with the gold standard, full kinetic analysis (nonlinear regression [NLR]). RESULTS Using an image-derived input function, NLR showed excellent test-retest and observer agreement confirming that it could be used as a gold standard method. From a total of 34 analytic methods, 10 showed good correlation with NLR. Taking into account the degree of complexity of the methods, 4 remain for further evaluation. CONCLUSION The optimal method for analysis of 18F-FDG PET data was determined for several levels of complexity. Four methods need to be evaluated further to determine the optimal trade-off between simplicity and accuracy for routine clinical practice.

[1]  R. Boellaard,et al.  Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  R L Wahl,et al.  Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  L M Hamberg,et al.  Simplified measurement of deoxyglucose utilization rate. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  P. Dupont,et al.  Potential use of FDG-PET scan after induction chemotherapy in surgically staged IIIa-N2 non-small-cell lung cancer: a prospective pilot study. The Leuven Lung Cancer Group. , 1998, Annals of oncology : official journal of the European Society for Medical Oncology.

[7]  F. Fazio,et al.  Errors Introduced by Tissue Heterogeneity in Estimation of Local Cerebral Glucose Utilization with Current Kinetic Models of the [18F]Fluorodeoxyglucose Method , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  E. Rota Kops,et al.  The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  Y Yonekura,et al.  In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  M Schwaiger,et al.  Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. , 1998, Blood.

[12]  K. Nackaerts,et al.  Survival and prognostic factors in resected N2 non-small cell lung cancer: a study of 140 cases. Leuven Lung Cancer Group. , 1997, The Annals of thoracic surgery.

[13]  Norihiro Sadato,et al.  Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours , 1998, European Journal of Nuclear Medicine.

[14]  M. Phelps,et al.  Quantification of serial tumor glucose metabolism. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  H. Yagata,et al.  Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2‐deoxy‐2‐fluoro[18F]‐D‐glucose , 1998, Cancer.

[16]  R A Hawkins,et al.  A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  J. Keyes SUV: standard uptake or silly useless value? , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  A. A. Lammertsma,et al.  On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies , 1999, European Journal of Nuclear Medicine.

[19]  A A Lammertsma,et al.  Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  A. Lammertsma,et al.  Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods , 2000, European Journal of Nuclear Medicine.

[21]  K. Nackaerts,et al.  Survival and prognostic factors in resected N2 non-small cell lung cancer: A study of 140 cases , 1997 .

[22]  H. Akaike A new look at the statistical model identification , 1974 .

[23]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[24]  A. Alavi,et al.  Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  R L Wahl,et al.  Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. , 1992, Radiology.