THE 4/2 STOCHASTIC VOLATILITY MODEL: A UNIFIED APPROACH FOR THE HESTON AND THE 3/2 MODEL

We introduce a new stochastic volatility model that includes, as special instances, the Heston (1993) and the 3/2 model of Heston (1997) and Platen (1997). Our model exhibits important features: first, instantaneous volatility can be uniformly bounded away from zero, and second, our model is mathematically and computationally tractable, thereby enabling an efficient pricing procedure. This called for using the Lie symmetries theory for partial differential equations; doing so allowed us to extend known results on Bessel processes. Finally, we provide an exact simulation scheme for the model, which is useful for numerical applications.

[1]  Vladimir V. Piterbarg,et al.  Moment explosions in stochastic volatility models , 2005, Finance and Stochastics.

[2]  E. Platen,et al.  Pricing Currency Derivatives Under the Benchmark Approach , 2013 .

[3]  P. Carr,et al.  A new approach for option pricing under stochastic volatility , 2007 .

[4]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[5]  A. Itkin New solvable stochastic volatility models for pricing volatility derivatives , 2012, 1205.3550.

[6]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[7]  J. Goard New solutions to the bond-pricing equation via Lie's classical method , 2000 .

[8]  A Penny Saved is a Penny Earned: Less Expensive Zero Coupon Bonds , 2016, 1608.04683.

[9]  The calculation of expectations for classes of diffusion processes by Lie symmetry methods , 2009, 0902.4806.

[10]  R. Engle,et al.  Modeling Variance of Variance: The Square-Root, the Affine, and the CEV GARCH Models ∗ , 2002 .

[11]  Leif Andersen Simple and efficient simulation of the Heston stochastic volatility model , 2008 .

[12]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[13]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[14]  Gurdip Bakshi,et al.  Estimation of Continuous-Time Models with an Application to Equity Volatility Dynamics , 2005 .

[15]  Jim Gatheral Consistent Modeling of SPX and VIX options , 2008 .

[16]  A. Javaheri The volatility process: a study of stock market dynamics via parametric stochastic volatility models and a comparaison to the information embedded in the option price , 2004 .

[17]  Eckhard Platen,et al.  Symmetry group methods for fundamental solutions , 2004 .

[18]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[19]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[20]  Mark Nardin,et al.  Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes , 1992 .

[21]  Joanna Goard,et al.  STOCHASTIC VOLATILITY MODELS AND THE PRICING OF VIX OPTIONS , 2013 .

[22]  F. Delbaen,et al.  Convergence of discretized stochastic (interest rate) processes with stochastic drift term , 1998 .

[23]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[24]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[25]  Jan Baldeaux EXACT SIMULATION OF THE 3/2 MODEL , 2011, 1105.3297.

[26]  Pricing of volatility derivatives using 3/2-stochastic models , 2011 .

[27]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[28]  J. Pitman,et al.  A decomposition of Bessel Bridges , 1982 .

[29]  Gabriel G. Drimus Options on realized variance by transform methods: a non-affine stochastic volatility model , 2009 .

[30]  S. Heston,et al.  A Simple New Formula for Options With Stochastic Volatility , 1997 .

[31]  Aurélien Alfonsi,et al.  High order discretization schemes for the CIR process: Application to affine term structure and Heston models , 2010, Math. Comput..

[32]  Paul Glasserman,et al.  Gamma expansion of the Heston stochastic volatility model , 2008, Finance Stochastics.

[33]  C. S. Jones The dynamics of stochastic volatility: evidence from underlying and options markets , 2003 .

[34]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[35]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[36]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..