Delta-nabla optimal control problems

We present a unified treatment to control problems on an arbitrary time scale by introducing the study of forward-backward optimal control problems. Necessary optimality conditions for delta-nabla isoperimetric problems are proved, and previous results in the literature are obtained as particular cases. As an application of the results of the paper we give necessary and sufficient Pareto optimality conditions for delta-nabla bi-objective optimal control problems.

[1]  Agnieszka B. Malinowska,et al.  Transversality conditions for infinite horizon variational problems on time scales , 2010, Optim. Lett..

[2]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[3]  Ewa Girejko,et al.  A unified approach to the calculus of variations on time scales , 2010, 2010 Chinese Control and Decision Conference.

[4]  Agnieszka B. Malinowska,et al.  F a S C I C U L I M a T H E M a T I C I , 2022 .

[5]  Delfim F. M. Torres,et al.  Isoperimetric Problems on Time Scales with Nabla Derivatives , 2008, 0811.3650.

[6]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.

[7]  Delfim F. M. Torres,et al.  Higher-Order Calculus of Variations on Time Scales , 2007, 0706.3141.

[8]  Delfim F. M. Torres,et al.  Integral Inequalities and Their Applications to the Calculus of Variations on Time Scales , 2010 .

[9]  Delfim F. M. Torres,et al.  Isoperimetric Problems of the Calculus of Variations on Time Scales , 2008, 0805.0278.

[10]  Delfim F. M. Torres,et al.  Noether's theorem on time scales , 2008 .

[11]  G. Guseinov,et al.  Integrable equations on time scales , 2005, nlin/0507061.

[12]  B. Brunt The calculus of variations , 2003 .

[13]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[14]  Delfim F. M. Torres,et al.  Hölderian variational problems subject to integral constraints , 2009 .

[15]  Agnieszka B. Malinowska,et al.  Necessary and sufficient conditions for local Pareto optimality on time scales , 2008 .

[16]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[17]  Ravi P. Agarwal,et al.  Dynamic equations on time scales: a survey , 2002 .

[18]  Martin Bohner CALCULUS OF VARIATIONS ON TIME SCALES , 2004 .

[19]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[20]  V. Lakshmikantham,et al.  Dynamic systems on measure chains , 1996 .

[21]  Agnieszka B. Malinowska,et al.  Strong minimizers of the calculus of variations on time scales and the Weierstrass condition , 2009, Proceedings of the Estonian Academy of Sciences.

[22]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[23]  J. Curtis Complementary Extremum Principles for Isoperimetric Optimization Problems , 2004 .

[24]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[25]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[26]  G. Guseinov,et al.  On Green's functions and positive solutions for boundary value problems on time scales , 2002 .

[27]  Ferhan Merdivenci Atici,et al.  A production-inventory model of HMMS on time scales , 2008, Appl. Math. Lett..