Comparison of Sampling Schemes for Dynamic Linear Models
暂无分享,去创建一个
[1] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[2] B. Bolker. Dynamic models , 2007 .
[3] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[4] D. Gamerman,et al. BAYESIAN ANALYSIS OF ECONOMETRIC TIME SERIES MODELS USING HYBRID INTEGRATION RULES , 2001 .
[5] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[6] A. M. Schmidt,et al. An adaptive resampling scheme for cycle estimation , 1999 .
[7] L. Knorr‐Held. Conditional Prior Proposals in Dynamic Models , 1999 .
[8] Alexandra M. Schmidt,et al. Hyperparameter estimation in forecast models , 1999 .
[9] D. Gamerman. Markov chain Monte Carlo for dynamic generalised linear models , 1998 .
[10] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[11] N. Shephard,et al. The simulation smoother for time series models , 1995 .
[12] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[13] N. Shephard. Partial non-Gaussian state space , 1994 .
[14] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[15] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[16] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[17] Michael A. West,et al. Efficient bayesian learning in non‐linear dynamic models , 1990 .
[18] M. West,et al. Bayesian forecasting and dynamic models , 1989 .
[19] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .