Non-standard analysis with applications to economics

Publisher Summary This chapter presents an introduction to nonstandard analysis and surveys its applications in mathematical economics. Nonstandard analysis is a mathematical technique, which has been widely used in diverse areas in pure and applied mathematics, including probability theory, mathematical physics, and functional analysis. It is used to formalize most areas of modern mathematics, including real and complex analysis, measure theory, probability theory, functional analysis, and point set topology; algebra is less amenable to nonstandard treatments, but even there significant applications have been found. The primary goal is to provide a careful development of nonstandard methodology in sufficient detail to allow using it in diverse areas in mathematical economics. This requires a careful study of the nonstandard treatment of real analysis, measure theory, and topological spaces. To accommodate this extended treatment of methodology the survey of work to date using nonstandard methods in mathematical economics is briefly reviewed in the chapter.

[1]  R. Aumann Markets with a continuum of traders , 1964 .

[2]  R. Anderson Strong Core Theorems with Nonconvex Preferences , 1985 .

[3]  Philip H. Dybvig,et al.  Bank Runs, Deposit Insurance, and Liquidity , 1983, Journal of Political Economy.

[4]  M. A. Khan Oligopoly in markets with a continuum of traders: An asymptotic interpretation☆ , 1976 .

[5]  M. A. Khan Some Remarks on the Core of a "Large" Economy , 1974 .

[6]  A. Robinson Non-standard analysis , 1966 .

[7]  Salim Rashid,et al.  A nonstandard characterization of weak convergence , 1978 .

[8]  Salim Rashid,et al.  Approximate Equilibria with Bounds Independent of Preferences , 1982 .

[9]  W. Trockel A limit theorem on the core , 1976 .

[10]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[11]  N. Yannelis,et al.  On Perfectly Competitive Economies: Loeb Economies , 1985 .

[12]  K. Judd The law of large numbers with a continuum of IID random variables , 1985 .

[13]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[14]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[15]  Robert M. Anderson,et al.  Core Theory with Strongly Convex Preferences , 1981 .

[16]  H. Keisler Foundations of infinitesimal calculus , 1976 .

[17]  W. Rudin Principles of mathematical analysis , 1964 .

[18]  M. A. Khan,et al.  Nonconvexity and Pareto Optimality in Large Markets , 1975 .

[19]  Eddie Dekel,et al.  Lexicographic Probabilities and Choice Under Uncertainty , 1991 .

[20]  B. Shitovitz On some problems arising in markets with some large traders and a continuum of small traders , 1974 .

[21]  T. Bewley Edgeworth's Conjecture , 1973 .

[22]  Donald J. Brown,et al.  Myopic Economic Agents , 1981 .

[23]  J. Geanakoplos The Bargaining Set and Nonstandard Analysis. , 1978 .

[24]  Eddie Dekel,et al.  Lexicographic Probabilities and Equilibrium Refinements , 1991 .

[25]  Hin See. Lee An introduction to non-standard real analysis. , 1975 .

[26]  Robert M. Anderson,et al.  An Elementary Core Equivalence Theorem , 1978 .

[27]  K. Stroyan Myopic utility functions on sequential economies , 1983 .

[28]  Robert M. Anderson,et al.  A non-standard representation for Brownian Motion and Itô integration , 1976 .

[29]  S. Albeverio Nonstandard Methods in Stochastic Analysis and Mathematical Physics , 1986 .

[30]  Werner Hildenbrand,et al.  Core of an economy , 1982 .

[31]  M. A. Khan Some approximate equilibria , 1975 .

[32]  The values of nonstandard exchange economies , 1976 .

[33]  Monotonic Preferences and Core Equivalence , 1991 .

[34]  Robert M. Anderson,et al.  Star-finite representations of measure spaces , 1982 .

[35]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[36]  A. Mas-Colell The Theory Of General Economic Equilibrium , 1985 .

[37]  E. Prescott,et al.  Equilibrium search and unemployment , 1974 .

[38]  H. Jerome Keisler,et al.  An Infinitesimal Approach to Stochastic Analysis , 1984 .

[39]  A. A. Lewis Hyperfinite Von Neumann games , 1985 .

[40]  R. Anderson The Second Welfare Theorem with Nonconvex Preferences , 1986 .

[41]  Nicolas Bourbaki,et al.  Théorie des ensembles , 1954 .

[42]  Peter A. Loeb,et al.  Weak limits of measures and the standard part map , 1979 .

[43]  A Price Adjustment Model With Infinitesimal Traders , 1986 .

[44]  S. Rashid Existence of Equilibrium in Infinite Economies with Production , 1978 .

[45]  Donald J. Brown,et al.  An extension of the Brown-Robinson equivalence theorem , 1980 .

[46]  D. W. Emmons Existence of Lindahl equilibria in measure theoretic economies without ordered preferences , 1984 .

[47]  Donald J. Brown,et al.  The Cores of Large Standard Exchange Economies , 1974 .

[48]  Economies with many agents : an approach using nonstandard analysis , 1988 .

[49]  Peter A. Loeb,et al.  Conversion from nonstandard to standard measure spaces and applications in probability theory , 1975 .

[50]  M. A. Khan,et al.  Approximate equilibria in markets with indivisible commodities , 1982 .

[51]  Mark Feldman,et al.  An expository note on individual risk without aggregate uncertainty , 1985 .

[52]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[53]  Abraham Robinson,et al.  Nonstandard exchange economies , 1975 .

[54]  E. Dierker Gains and losses at core allocations , 1975 .

[55]  Benyamin Shitovitz,et al.  Oligopoly in Markets with a Continuum of Traders , 1973 .

[56]  Donald J. Brown Existence of a Competitive Equilibrium in a Nonstandard Exchange Economy , 1976 .

[57]  S. Rashid The relationship between measure-theoretic and non-standard exchange economies☆ , 1979 .

[58]  K. D. Stroyan,et al.  Introduction to the theory of infinitesimals , 1976 .