High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers

We propose a scheme to realize high-speed all-optical encryption and decryption using key-stream generators and optical XOR gates utilizing the ultrafast two-photon absorption (TPA)-induced phase change in semiconductor optical amplifiers (SOAs). The key used for encryption and decryption is a high-speed all-optical pseudorandom bit sequence which is generated by a linear feedback shift register (LFSR) together with optical XOR and AND gates. The input intensities to the SOA are high enough so that the fast TPA-induced phase change is larger than the regular induced phase change. We also designed and investigated three more secure key-stream generators, i.e., a three LFSR cascaded design generator, an alternating step generator, and a shrinking generator. Results show that this scheme can realize all-optical encryption and decryption by using key-stream generators at high speed up to 250 Gb/s.

[1]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Qi Jie Wang,et al.  All-optical logic XOR using differential scheme and Mach-Zehnder interferometer , 2002 .

[3]  A. Kloch,et al.  Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter , 2000 .

[4]  Hercules Avramopoulos,et al.  Design Algorithm of All-Optical Linear Feedback Shift Registers , 2003 .

[5]  Peter J. Delfyett,et al.  Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers , 1996 .

[6]  Niloy K. Dutta,et al.  High speed all-optical encryption and decryption using quantum dot semiconductor optical amplifiers , 2013 .

[7]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[8]  Hu Chuan-Gan,et al.  On The Shift Register Sequences , 2004 .

[9]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[10]  Samanvay Gupta Encryption and Decryption , 2012 .

[11]  N. Dutta,et al.  XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer. , 2005, Optics express.

[12]  J. Mørk,et al.  Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers , 1997 .

[13]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[14]  G. Theophilopoulos,et al.  20 Gb/s all-optical XOR with UNI gate , 2000, IEEE Photonics Technology Letters.

[15]  G. Eisenstein Semiconductor optical amplifiers , 1989, IEEE Circuits and Devices Magazine.

[16]  Yasuhiko Arakawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers , 2003, Proceedings of the IEEE.

[17]  Caroline Fontaine Shrinking Generator , 2011, Encyclopedia of Cryptography and Security.

[18]  H. Avramopoulos,et al.  10 Gbit/s all-optical Boolean XOR with SOA fibre Sagnac gate , 1999 .

[19]  Niloy K. Dutta,et al.  All-optical latches based on two-photon absorption in semiconductor optical amplifiers , 2012 .

[20]  Niloy K. Dutta,et al.  All optical logic gates based on two-photon absorption , 2010, Photonics North.

[21]  H. de Waardt,et al.  Ultrafast refractive-index dynamics in a multiquantum-well semiconductor optical amplifier , 2003, IEEE Photonics Technology Letters.

[22]  H. de Waardt,et al.  All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Kyriakos E. Zoiros,et al.  Ultra-high speed all-optical shift registers and their applications in OTDM networks , 2004 .

[24]  D. Lenstraa,et al.  All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement , 2002 .

[25]  Liam P. Barry,et al.  Two-photon induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation , 2002 .

[26]  P. W. Black Optical fibre communications — principles and practice , 1986 .

[27]  John M. Senior,et al.  Optical Fiber Communications: Principles and Practice , 2008 .