Thin Film Deposition Methods for CuInSe 2 Solar Cells

Abstract CuInSe2 and its alloys with Ga and/or S are among the most promising absorber materials for thin film solar cells. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies of all thin film solar cells, above 19%. Solar cells based on these materials are also very stable, thus allowing long operational lifetimes. The preparation of a thin film solar cell is a multistage process where every step affects the resulting cell performance and the production cost. CuInSe2 and other Cu chalcopyrites can be prepared by a variety of methods, ranging from physical vapor deposition methods such as evaporation and sputtering to low-temperature liquid phase methods such as electrodeposition. The present review discusses first the concept and operation principle of thin film solar cells, as well as the most important thin film solar cell materials. Next, the properties of CuInSe2 and related compounds, as well as features of solar cells made thereof are reviewed. The last part of the text deals with deposition methods used for the preparation of CuInSe2 and Cu(In,Ga)Se2 thin film absorbers and solar cells. Although the emphasis here is on absorber preparation methods, buffer and conducting oxide preparation are discussed as well.

[1]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[2]  Franz Karg,et al.  Development and manufacturing of CIS thin film solar modules , 2001 .

[3]  F. Ouchen,et al.  CuInSe2 thin films grown by MOCVD: characterization, first devices , 1998 .

[4]  M. E. Calixto,et al.  Depth profile analysis of CuInSe2 (CIS) thin films grown by the electrodeposition technique , 2000 .

[5]  C. Guillén,et al.  CuInSe2 thin films obtained by a novel electrodeposition and sputtering combined method , 2000 .

[6]  L. Kronik,et al.  Interface redox engineering of Cu(In,Ga)Se2 – based solar cells: oxygen, sodium, and chemical bath effects ☆ , 2000 .

[7]  S. N. Sahu,et al.  Electrodeposition of CuInSe2 thin films from aqueous solution , 1989 .

[8]  K. Knapp,et al.  Empirical investigation of the energy payback time for photovoltaic modules , 2001 .

[9]  K. Granath,et al.  The effect of NaF on Cu(In, Ga)Se2 thin film solar cells , 2000 .

[10]  H. Schock,et al.  Indium-Based Interface Chemical Engineering by Electrochemistry and Atomic Layer Deposition for Copper Indium Diselenide Solar Cells , 2001 .

[11]  P. Garg,et al.  Growth and characterization of electrodeposited CuInSe2 thin films from seleno-sulphate solution , 1991 .

[12]  Rommel Noufi,et al.  Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells , 2002 .

[13]  K. Fezzaa,et al.  One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure , 1996 .

[14]  R. Noufi,et al.  Characterizations of electrodeposited CuInSe2 thin films: Structure, deposition and formation mechanisms , 1991 .

[15]  G. Maurin,et al.  Preparation of polycrystalline thin films of CuInSe2 by electrodeposition , 1989 .

[16]  J. Fulghum,et al.  Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy , 1997 .

[17]  D. Lincot,et al.  Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells , 2000 .

[18]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[19]  H. Zogg,et al.  Light soaking effects in Cu(In,Ga)Se2 superstrate solar cells , 2003 .

[20]  T. Moriarty,et al.  The performance of CuIn1−xGaxSe2-based photovoltaic cells prepared from low-cost precursor films , 2000 .

[21]  S. Shirakata,et al.  Properties of Cu(In, Ga)Se_2 Thin Films Prepared by Chemical Spray Pyrolysis , 1999 .

[22]  Robert W. Birkmire,et al.  Compound polycrystalline solar cells:: Recent progress and Y2 K perspective , 2001 .

[23]  E. Bacaksız,et al.  Production of CuInSe2 thin films by a sequential processes of evaporations and selenization , 1999 .

[24]  S. Kim,et al.  Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container , 1999 .

[25]  A. D. Cunha,et al.  A voltammetric study of the electrodeposition of CuInSe2 in a citrate electrolyte , 2002 .

[26]  U. Rau,et al.  Classification of metastabilities in the electrical characteristics of ZnO/CdS/Cu(In,Ga)Se2 solar cells , 2001 .

[27]  A. Swartzlander,et al.  Studies on sulfur diffusion into Cu(In,Ga)Se2 thin films , 2000 .

[28]  P. Berwian,et al.  In situ resistivity measurements of precursor reactions in the Cu–In–Ga system , 2003 .

[29]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[30]  I. Parkin,et al.  Characterisation of the photocatalyst Pilkington Activ (TM): a reference film photocatalyst? , 2003 .

[31]  M. Lux‐Steiner,et al.  Cd-free buffer layers for CIGS solar cells prepared by a dry process , 2002 .

[32]  M. Ganchev,et al.  Preparation and structure of annealed CuInSe2 electrodeposited films , 1997 .

[33]  J. R. Botha,et al.  Properties of CuIn(Se,S)2 thin films prepared by two-step growth processes , 2003 .

[34]  J. Nagaraju,et al.  Pulsed excimer laser ablated copper indium diselenide thin films , 2000 .

[35]  Lars Stolt,et al.  A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells , 1996 .

[36]  M. Konagai,et al.  Cu(InGa)Se2 Thin-film Solar Cells with High Resistivity ZnO Buffer Layers Deposited by Atomic Layer Deposition , 1999 .

[37]  H. Minoura,et al.  Electrodeposition of CuInSe2 films from a sulphate bath , 1990 .

[38]  M. Ritala,et al.  One‐Step Electrodeposition of Cu2 − x Se and CuInSe2 Thin Films by the Induced Co‐deposition Mechanism , 2000 .

[39]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[40]  D. Balzar,et al.  Growth and characterization of large area Cu(In, Ga)Se2 films , 2001 .

[41]  M. Powalla,et al.  Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition , 2001 .

[42]  C. Guillén,et al.  Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors , 2002 .

[43]  M. P. R. Panicker,et al.  Cathodic Deposition of CdTe from Aqueous Electrolytes , 1978 .

[44]  C. X. Qiu,et al.  Study of CuInSe2 thin films prepared by electrodeposition , 1995 .

[45]  H. Zogg,et al.  Comparison of structural and electrical properties of Cu(In, Ga)Se2 for substrate and superstrate solar cells , 2002 .

[46]  K. C. Sharma,et al.  Characterization of p-CuInSe2 films for photovoltaics grown by a chemical deposition technique , 1988 .

[47]  E. Bucher,et al.  Phase separation and compositional changes in two-stage processed chalcopyrite thin films , 2001 .

[48]  C. Guillén,et al.  Comparative studies between Cu-Ga-Se and Cu-In-Se thin film systems , 2002 .

[49]  Philip A. Jones,et al.  The plasma enhanced chemical vapour deposition of CuInSe2 , 1994 .

[50]  K. Kushiya,et al.  Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer , 2001 .

[51]  H. Schock,et al.  Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .

[52]  R. J. Mccurdy,et al.  Float Line Deposited Transparent Conductors -Implications for the Pv Industry , 1996 .

[53]  C. Monty,et al.  Morphology of Cu(In,Ga)Se2 thin films grown by close-spaced vapor transport from sources with different grain sizes , 2002 .

[54]  F. Ouchen,et al.  Growth of CuInSe2 by metallorganic chemical vapour deposition (MOCVD): new copper precursor , 1996 .

[55]  T. Nakada,et al.  Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .

[56]  M. Ganchev,et al.  Investigation of the electrodeposition process in the Cu-In-Se system , 1993 .

[57]  P. Hagenmuller,et al.  THERMODYNAMICS OF METAL COMPLEX FORMATION IN AQUEOUS SOLUTION. XII. EQUILIBRIUM MEASUREMENTS ON THE COPPER(I) BROMIDE, IODIDE AND THIOCYANATE SYSTEMS , 1978 .

[58]  V. Alberts,et al.  Preparation of device quality chalcopyrite thin films by thermal evaporation of compound materials , 2002 .

[59]  V. Alberts,et al.  Properties of flash evaporated chalcopyrite absorber films and solar cells , 2001 .

[60]  H. Schock,et al.  The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells , 2001 .

[61]  Bulent M. Basol,et al.  Low cost techniques for the preparation of Cu(In,Ga)(Se,S) 2 absorber layers , 2000 .

[62]  David Cahen,et al.  Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance , 1998 .

[63]  K. Kushiya Improvement of electrical yield in the fabrication of CIGS-based thin-film modules , 2001 .

[64]  M. E. Calixto,et al.  CuInSe2 thin films formed by selenization of Cu–In precursors , 1998 .

[65]  T. Negami,et al.  Use of diethylselenide as a less-hazardous source for preparation of CuInSe2 photo-absorbers by selenization of metal precursors , 2002 .

[66]  M. Ritala,et al.  Electrochemical quartz crystal microbalance study of the electrodeposition mechanisms of Cu2−xSe thin films , 2000 .

[67]  M. Bär,et al.  ILGAR‐ZnO Window Extension Layer: an adequate substitution of the conventional CBD‐CdS buffer in Cu(In,Ga) (S,Se)2‐based solar cells with superior device performance , 2002 .

[68]  C. Guillén,et al.  New approaches to obtain CuIn1−xGaxSe2 thin films by combining electrodeposited and evaporated precursors , 1998 .

[69]  Rommel Noufi,et al.  Properties of ZnO/CdS/CuInSe2 solar cells with improved performance , 2004 .

[70]  J. Abushama,et al.  Improved performance in ZnO/CdS/CuGaSe2 thin‐film solar cells , 2003 .

[71]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[72]  J. M. Merino,et al.  Flash evaporation of chalcogenide thin films , 2000 .

[73]  K. Kushiya,et al.  Stabilization of PN Heterojunction between Cu(InGa)Se2 Thin-Film Absorber and ZnO Window with Zn(O, S, OH)x Buffer , 2000 .

[74]  A. Ennaoui,et al.  Influence of citrate ions as complexing agent for electrodeposition of CuInSe2 thin films , 2001 .

[75]  A. Yamada,et al.  Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers , 1995 .

[76]  R. Klenk Characterisation and modelling of chalcopyrite solar cells , 2001 .

[77]  Y. Ohtake Improved performance of Cu(InGa)Se2 thin-film solar cells using evaporated Cd-free buffer layers , 1997 .

[78]  Aloysius F. Hepp,et al.  Single Source Precursors for Fabrication of I-III-VI2 Thin-film Solar Cells via Spray CVD , 2003 .

[79]  Electrodeposition of CuInSe 2 and doped ZnO thin films for solar cells , 2003 .

[80]  J. Werner,et al.  Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation , 2001 .

[81]  P. K. Datta,et al.  Detection of Crystalline Phases in CuInSe2 Films Grown by Selenisation Process , 2000 .

[82]  M. Nishitani,et al.  Stability of Cu(In,Ga)Se2 solar cells and evaluation by C–V characteristics , 1998 .

[83]  D. Cahen,et al.  Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance , 1989 .

[84]  A. Garg,et al.  Structural Properties and Growth Mechanism of Copper and Indium Selenide Films Prepared by Electrochemical Selenization of Metal Layers , 1994 .

[85]  S. Lin,et al.  Large Grain Copper Indium Diselenide Films , 1984 .

[86]  P. J. Sebastian,et al.  Deposition of smooth Cu(In,Ga)Se2 films from binary multilayers , 2000 .

[87]  H. Fritz,et al.  A new electrochemical method for selenization of stacked CuIn layers and preparation of CuInSe2 by thermal annealing , 1994 .

[88]  F. A. Kröger Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds , 1978 .

[89]  H. Schock,et al.  Depth profile of the lattice constant of the Cu-poor surface layer in (Cu , 2003 .

[90]  W. Shafarman,et al.  Determination of activation barriers for the diffusion of sodium through CIGS thin‐film solar cells , 2003 .

[91]  M. Ritala,et al.  Electrochemical preparation of In and Al doped zno thin films for CuInSe2 solar cells , 2003 .

[92]  R. Córdova,et al.  Electrodeposition of CuInSe2 thin films in a glycine acid medium , 1999 .

[93]  R. Reineke-Koch,et al.  Large area electrodeposition of Cu(In,Ga)Se2 , 2000 .

[94]  Daniel Lincot,et al.  Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells , 2000 .

[95]  A. Ashour,et al.  Structural study of flash evaporated CuInSe2 thin films , 2001 .

[96]  D. Lincot,et al.  Chemical elaboration of well defined Cu(In,Ga)Se2 surfaces after aqueous oxidation etching , 2003 .

[97]  H. Schock,et al.  Electrical characterization of Cu(In, Ga)Se2 thin-film solar cells and the role of defects for the device performance , 2001 .

[98]  C. Guillén,et al.  Effects of Thermal and Chemical Treatments on the Composition and Structure of Electrodeposited CuInSe2 Thin Films , 1994 .

[99]  C. X. Qiu,et al.  Investigation of electrodeposited CuInSe2 films , 1987 .

[100]  Daniel Lincot,et al.  High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD) , 2003 .

[101]  U. Rau,et al.  Compositional trends of defect energies, band alignments, and recombination mechanisms in the Cu(In,Ga)(Se,S)2 alloy system , 2003 .

[102]  W. Shafarman,et al.  Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices , 2000 .

[103]  Adolf Goetzberger,et al.  Solar cells: past, present, future , 2002 .

[104]  M. Ritala,et al.  Electrochemical Quartz Crystal Microbalance Study of the Electrodeposition Mechanisms of CuInSe2 Thin Films , 2001 .

[105]  D. Schmid,et al.  Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .

[106]  Andrew G. Glen,et al.  APPL , 2001 .

[107]  E. M. Gordon,et al.  Electrodeposited CdS on CIS pn junctions , 1999 .

[108]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[109]  A. Dikusar,et al.  Electrodeposition of CuInSe2 thin films from aqueous citric solutions II. Investigation of macrokinetics of electrodeposition by means of rotating disk electrode , 1994 .

[110]  K. Kushiya,et al.  Performance improvement of CIGS-based modules by depositing high-quality Ga-doped ZnO windows with magnetron sputtering , 2001 .

[111]  Lars Stolt,et al.  ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance , 1993 .

[112]  S. Nishiwaki,et al.  Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18% , 2001 .

[113]  A. Ennaoui,et al.  High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers , 2001 .

[114]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[115]  N. F. Cooray,et al.  Large area ZnO films optimized for graded band-gap Cu(InGa)Se2-based thin-film mini-modules , 1997 .

[116]  P. J. Sebastian,et al.  Fundamental studies on large area Cu(In,Ga)Se2 films for high efficiency solar cells , 2001 .

[117]  N. Kohara,et al.  Chemical bath deposition of Cds buffer layer for GIGS solar cells , 1998 .

[118]  M. Witcomb,et al.  Influence of selenization techniques on the reaction kinetics of chalcopyrite thin films , 2001 .

[119]  M. Ritala,et al.  Electrodeposition of PbTe thin films , 1998 .

[120]  T. Nakada,et al.  Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer , 2001 .

[121]  P. Prosini,et al.  Electrodeposition of copper-indium alloy under diffusion-limiting current control , 1996 .

[122]  R. Klenk,et al.  PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .

[123]  A. Rockett,et al.  Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances , 2000 .

[124]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[125]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[126]  U. Rau,et al.  Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells — aspects of heterojunction formation , 2001 .

[127]  M. Contreras,et al.  Texture manipulation of CuInSe2 thin films , 2000 .

[128]  D. Schmid,et al.  A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures , 1994 .

[129]  Jerry D. Harris,et al.  A new facile route for the preparation of single-source precursors for bulk, thin-film, and nanocrystallite I-III-VI semiconductors. , 2003, Inorganic chemistry.

[130]  J. Zank,et al.  Electrochemical codeposition of indium and gallium for chalcopyrite solar cells , 1996 .

[131]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[132]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .

[133]  H. Schock,et al.  Study of the effect of gallium grading in Cu(In,Ga)Se2 , 2000 .

[134]  M. Martínez,et al.  Chemistry of CdS / CuInSe2 Structures as Controlled by the CdS Deposition Bath , 2001 .

[135]  Wolfgang Riedl,et al.  Rapid CIS-process for high efficiency PV-modules: development towards large area processing , 2001 .

[136]  H. Schock,et al.  Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2 , 2001 .

[137]  Uwe Rau,et al.  Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation , 2001 .

[138]  H. Lee,et al.  Preparation of CuIn(S, Se)2 thin films by thermal crystallization in sulfur and selenium atmosphere , 2003 .

[139]  C. M. Joseph,et al.  Electrical, optical and structural properties of binary phase free CuInSe2 thin films , 2001 .

[140]  S. Nomura,et al.  Preparation of CuInSe 2 Thin Films on Mo-Coated Glass Substrates by Pulse-Plated Electrodeposition , 1998 .

[141]  Pandey Handbook of semiconductor electrodeposition , 1996 .

[142]  B. Stanbery Copper Indium Selenides and Related Materials for Photovoltaic Devices , 2002 .

[143]  Martin A. Green,et al.  Solar cell efficiency tables (version 22) , 2003 .

[144]  B. Ahn,et al.  Fabrication of CuInSe2 films and solar cells by the sequential evaporation of In2Se3 and Cu2Se binary compounds , 2001 .

[145]  R. Klenk,et al.  Efficient thin-film solar cells prepared by a sequential process , 1998 .

[146]  W. Kemp,et al.  Ionizing radiation effects in copper indium gallium diselenide thin-film solar cells , 2002 .

[147]  Electrodeposition of CuInSe2 and doped ZnO thin films for solar cells , 2003 .

[148]  Robert W. Birkmire,et al.  POLYCRYSTALLINE THIN FILM SOLAR CELLS:Present Status and Future Potential , 1997 .

[149]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[150]  C. Eberspacher,et al.  Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques , 2001 .

[151]  M. Konagai,et al.  Preferred Orientation Control of Cu(In1-xGax)Se2 (x ≈0.28) Thin Films and Its Influence on Solar Cell Characteristics , 2002 .

[152]  B. Ahn,et al.  Effect of CuIn3Se5 layer thickness on CuInSe2 thin films and devices , 1998 .

[153]  A. Kylner Effect of impurities in the CdS buffer layer on the performance of the Cu(In, Ga)Se2 thin film solar cell , 1999 .

[154]  H. Hwang,et al.  Steps toward industrialization of Cu-III-VI2 thin-film solar cells: a novel full in-line concept , 2003 .

[155]  Hans Zogg,et al.  CIS and CIGS layers from selenized nanoparticle precursors , 2003 .

[156]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[157]  M. Al‐Jassim,et al.  Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films , 1997 .

[158]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[159]  S. Sanchez,et al.  Cathodic deposition of copper selenide films on tin oxide in sulfate solutions , 1993 .

[160]  Nandu B. Chaure,et al.  Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications , 2004 .

[161]  L. Kronik,et al.  Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices , 1999 .

[162]  C. Bostedt,et al.  LOCALIZATION OF NA IMPURITIES AT THE BURIED CDS/CU(IN, GA)SE2 HETEROJUNCTION , 1999 .

[163]  Omar Isaac Asensio,et al.  Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks , 2003 .

[164]  U. Rau,et al.  Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition , 2003 .

[165]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[166]  C. Lokhande Pulse plated electrodeposition of CuInSe/sub 2/ films , 1987 .

[167]  AbuBakr S. Bahaj,et al.  Means of enhancing and promoting the use of solar energy , 2002 .

[168]  H. Ogawa,et al.  Optical and electrical properties of flash-evaporated amorphous CuInSe2 films , 2000 .

[169]  Vasilis Fthenakis,et al.  Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide , 1999 .

[170]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[171]  H. Schock,et al.  Electronic loss mechanisms in chalcopyrite based heterojunction solar cells , 2000 .

[172]  Jean-François Guillemoles,et al.  Stability Issues of Cu(In,Ga)Se2-Based Solar Cells , 2000 .

[173]  K. Granath,et al.  Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors , 2000 .

[174]  A. Rockett,et al.  Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells , 2003 .

[175]  M. Ritala,et al.  Electrodeposition of lead selenide thin films , 1998 .

[176]  M. Yamaguchi Radiation resistance of compound semiconductor solar cells , 1995 .

[177]  B. Basol,et al.  CIS film growth by metallic ink coating and selenization , 2000 .

[178]  N. Kohara,et al.  Preparation and characterization of Cu(In1−xGax)3Se5 thin films , 1995 .

[179]  Rommel Noufi,et al.  Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .

[180]  J. Sites,et al.  15.4% CuIn1−xGaxSe2-based photovoltaic cells from solution-based precursor films , 2000 .

[181]  H. Zogg,et al.  Effects of NaF coevaporation on structural properties of Cu(In, Ga)Se2 thin films , 2003 .

[182]  S. Chaudhuri,et al.  CuIn(SxSe1−x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers , 2001 .

[183]  David J. Williams,et al.  The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis(diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials , 2004 .

[184]  J. M. Stewart,et al.  Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe/sub 2/ solar cells , 1990 .

[185]  A. Dikusar,et al.  Electrodeposition of CuInSe2 thin films from aqueous citric solutions I. Influence of potential and mass transfer rate on composition and structure of films , 1994 .

[186]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[187]  L. Kazmerski,et al.  Electroplated CuInS2 and CuInSe2 layers: Preparation and physical and photovoltaic characterization , 1985 .

[188]  A. Rockett,et al.  Na incorporation in Mo and CuInSe2 from production processes , 1999 .

[189]  S. Nishiwaki,et al.  High-efficiency CIGS solar cells with modified CIGS surface , 2001 .

[190]  L. Stolt,et al.  Cu(In,Ga)Se2 thin films grown with a Cu‐poor/rich/poor sequence: growth model and structural considerations , 2003 .

[191]  C. Bostedt,et al.  Observation of intermixing at the buried CdS/Cu(In, Ga)Se2 thin film solar cell heterojunction , 1999 .

[192]  K. Jain,et al.  Growth phases during electrochemical selenization of vacuum deposited CuIn metal layers for the formation of semiconducting CuInSe2 films , 1999 .

[193]  Christopher Hebling,et al.  Photovoltaic materials, past, present, future , 2000 .

[194]  D. B. Holt,et al.  The structure of epitaxial films of ZnS evaporated onto NaCl in a vacuum , 1970 .

[195]  K. Ramanathan,et al.  CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors , 1998 .

[196]  S. Kuranouchi,et al.  Annealing effects of CuInSe2 films prepared by pulsed laser deposition , 1999 .

[197]  S. Siebentritt Wide gap chalcopyrites: material properties and solar cells , 2002 .

[198]  Y. Hashimoto,et al.  Production technology for CIGS thin film solar cells , 2002 .

[199]  C. X. Qiu,et al.  ZnO/CdS/CuInSe2 photovoltaic cells fabricated using chemical bath deposited CdS buffer layer , 1997 .

[200]  Yasuhiko Sato,et al.  Application of Zn-Compound Buffer Layer for Polycrystalline CuInSe2-Based Thin-Film Solar Cells , 1996 .

[201]  J. Parisi,et al.  Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells , 2002 .

[202]  H. Schock,et al.  CIGS‐based solar cells for the next millennium , 2000 .

[203]  R. K. Pandey,et al.  Properties of CuInSe2 films prepared by the rapid thermal annealing technique , 1993 .

[204]  Akio Kunioka,et al.  Superstrate-Type Cu(In, Ga)Se2 Thin Film Solar Cells with ZnO Buffer Layers. , 1998 .

[205]  L. Thouin,et al.  Formation of copper indium diselenide by electrodeposition , 1994 .

[206]  T. Nakada,et al.  18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers , 2002 .

[207]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[208]  A. Ashida,et al.  CuInSe2 thin films prepared by quasi-flash evaporation of In2Se3 and Cu2Se , 1994 .

[209]  D. Lincot,et al.  Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste , 2001 .

[210]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .

[211]  B. Dimmler,et al.  Scaling up issues of CIGS solar cells , 2000 .

[212]  H. Schock,et al.  Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films , 2000 .

[213]  R. Bhattacharya Solution Growth and Electrodeposited CuInSe2Thin Films , 1983 .

[214]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[215]  A. Rockett,et al.  Oxygen in Solution Grown CdS Films for Thin Film Solar Cells , 1996 .

[216]  M. Kemmler,et al.  The deposition of thin films of CuME2 by CVD techniques (M = In, Ga and E = S, Se) , 2003 .

[217]  Bulent M. Basol,et al.  Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells☆ , 1987 .

[218]  Robert W. Birkmire,et al.  CuInSe2 for photovoltaic applications , 1991 .

[219]  H. Schock,et al.  Wet treatment based interface engineering for high efficiency Cu(In,Ga)Se2 solar cells , 2000 .

[220]  T. Ohshima,et al.  Annealing Enhancement Effect by Light Illumination on Proton Irradiated Cu(In,Ga)Se2 Thin-Film Solar Cells , 2002 .

[221]  J. M. Merino,et al.  Composition effects on the crystal structure of CuInSe2 , 1996 .

[222]  D. Lincot,et al.  Chemical Deposition of Chalcogenide Thin Films from Solution , 1999 .

[223]  Akio Kunioka,et al.  Effects of Sodium on Cu(In, Ga)Se2-Based Thin Films and Solar Cells , 1997 .

[224]  U. Rau,et al.  Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .

[225]  M. Ritala,et al.  Effects of post-deposition treatments on the photoactivity of CuInSe2 thin films deposited by the induced co-deposition mechanism , 2001 .

[226]  Jean-François Guillemoles,et al.  CU(IN, GA)SE2 SOLAR CELLS : DEVICE STABILITY BASED ON CHEMICAL FLEXIBILITY , 1999 .