Flickering of the Vela pulsar during its 2016 glitch

The first pulse-to-pulse observations of a neutron star glitch in the Vela pulsar identified a null pulse hinting at the sudden disruption of the neutron star's magnetosphere. The only physical model connecting the glitch and the null pulse relies on a starquake either triggering, or being triggered by, the glitch itself. Until now, this was the only null pulse identified from over 50 years of observing the Vela pulsar. We identify five other null-like pulses, that we term quasi-nulls, before and after the glitch, separated by hundreds of seconds. We verify that such nulls are not found in data away from the glitch. We speculate that the quasi-nulls are associated with foreshocks and aftershocks preceding and following the main quake, analogously with terrestrial quakes. This implies the energy reservoir built up between glitches is not released suddenly, but over a period of minutes to hours around the time of the glitch.

[1]  D. Jones,et al.  Transient gravitational waves from pulsar post-glitch recoveries , 2020, 2007.05893.

[2]  M. Antonelli,et al.  Bayesian estimate of the superfluid moments of inertia from the 2016 glitch in the Vela pulsar , 2020, Astronomy & Astrophysics.

[3]  Y. Levin,et al.  A Quake Quenching the Vela Pulsar , 2020, The Astrophysical Journal.

[4]  M. Antonelli,et al.  Core and crust contributions in overshooting glitches: the Vela pulsar 2016 glitch , 2019, Astronomy & Astrophysics.

[5]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[6]  P. Lasky,et al.  Rotational evolution of the Vela pulsar during the 2016 glitch , 2019, Nature Astronomy.

[7]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[8]  Ucb Bsj Glitch , 2019, Berkeley Scientific Journal.

[9]  A. Cumming,et al.  Glitch Rises as a Test for Rapid Superfluid Coupling in Neutron Stars , 2018, The Astrophysical Journal.

[10]  J. Dickey,et al.  Alteration of the magnetosphere of the Vela pulsar during a glitch , 2018, Nature.

[11]  J. Palfreyman A long-term single-pulse study of the Vela pulsar , 2018 .

[12]  M. Hobson,et al.  Wide-band profile domain pulsar timing analysis , 2016, 1612.05258.

[13]  G. Malsiner‐Walli,et al.  Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.

[14]  M. Hobson,et al.  Generative pulsar timing analysis , 2014, 1412.1427.

[15]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[16]  Willem van Straten,et al.  Pulsar data analysis with PSRCHIVE , 2012, 1205.6276.

[17]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[18]  R. Dodson,et al.  Two decades of pulsar timing of Vela , 2006, astro-ph/0612371.

[19]  Donald B. Rubin,et al.  Validation of Software for Bayesian Models Using Posterior Quantiles , 2006 .

[20]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[21]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[22]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[23]  P. McCulloch,et al.  High Time Resolution Observations of the January 2000 Glitch in the Vela Pulsar , 2002, astro-ph/0201005.

[24]  S. Johnston,et al.  High Time Resolution Observations of the Vela Pulsar , 2001, astro-ph/0101146.

[25]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[26]  M. Alpar Models for Pulsar Glitches , 1995 .

[27]  J. Biggs An Analysis of Radio Pulsar Nulling Statistics , 1992 .

[28]  Australia.,et al.  The shape of pulsar radio beams , 1988, astro-ph/0010538.

[29]  D. Backer Pulsar Nulling Phenomena , 1970, Nature.