An internal state variable damage model in crystal plasticity

Abstract This paper presents a polycrystalline plasticity theory including damage evolution in FCC materials. The formulation is thermodynamically-based and involves a multiplicative decomposition of the deformation gradient into its elastic, plastic and volumetric components. Plastic deformation at the grain level is assumed to occur by rate-dependent crystallographic slip. As a result of accumulated plastic strain and stress triaxiality, damage evolution leading to volumetric deformation is considered to occur within a single crystal by void nucleation, growth and coalescence. The overall stress–strain response of the polycrystalline material is obtained by Taylor averaging on the stress response of each grain. In the model, damage progression arises naturally from averaging each single crystal’s damage evolution. A parametric study is performed to evaluate the amount of damage and strains at fracture on both single and polycrystals in order to understand crystal orientation effects. For validation purposes, model predictions of uniaxial stress–strain data are compared with experimental results for some aluminum alloys, and the comparison is shown to agree very well.

[1]  Mark F. Horstemeyer,et al.  Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase , 2003 .

[2]  Michael Ortiz,et al.  Ductile fracture by vacancy condensation in f.c.c. single crystals , 1996 .

[3]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[4]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[5]  David L. McDowell,et al.  Modeling effects of dislocation substructure in polycrystal elastoviscoplasticity , 1998 .

[6]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[7]  S. Ahzi,et al.  Mechanics of porous polycrystals: a fully anisotropic flow potential , 1998 .

[8]  Howard Kuhn,et al.  Mechanical testing and evaluation , 2000 .

[9]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[10]  Mark F. Horstemeyer,et al.  Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence , 2000 .

[11]  Mohammed A. Zikry,et al.  Void growth and interaction in crystalline materials , 2001 .

[12]  F. Lu,et al.  On analysis of the elasto‐viscoplastic response of single crystals with anisotropic damage: constitutive modelling and computational aspects , 2004 .

[13]  Elias C. Aifantis,et al.  A damage model for ductile metals , 1989 .

[14]  Weidong Qi,et al.  Anisotropic continuum damage modeling for single crystals at high temperatures , 1999 .

[15]  Lynn Seaman,et al.  Computational models for ductile and brittle fracture , 1976 .

[16]  Mark F. Horstemeyer,et al.  On the numerical implementation of 3D rate‐dependent single crystal plasticity formulations , 2005 .

[17]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[18]  Mark F. Horstemeyer,et al.  A void–crack nucleation model for ductile metals , 1999 .

[19]  J. Kysar,et al.  Cylindrical void in a rigid-ideally plastic single crystal. II: Experiments and simulations , 2006 .

[20]  D. Vokoun,et al.  On backstresses, overstresses, and internal stresses represented on the mesoscale , 2005 .

[21]  Mark F. Horstemeyer,et al.  Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy , 2000 .

[22]  John Y. Shu,et al.  Scale-dependent deformation of porous single crystals , 1998 .

[23]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[24]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[25]  Viggo Tvergaard,et al.  Ductile fracture by cavity nucleation between larger voids , 1982 .

[26]  John W. Hutchinson,et al.  Void Growth and Collapse in Viscous Solids , 1982 .

[27]  Mark F. Horstemeyer,et al.  Lattice orientation effects on void growth and coalescence in fcc single crystals , 2006 .

[28]  Mark F. Horstemeyer,et al.  On Factors Affecting Localization and Void Growth in Ductile Metals: A Parametric Study , 2000 .

[29]  D. Benson The effects of void cluster size on ductile fracture , 1995 .

[30]  E. B. Marin,et al.  A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .

[31]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[32]  B. N. Legarth Unit cell debonding analyses for arbitrary orientation of plastic anisotropy , 2004 .

[33]  W. E. Warren,et al.  Spall fracture in aluminum monocrystals: a dislocation‐dynamics approach , 1972 .

[34]  J. Kysar,et al.  Cylindrical void in a rigid-ideally plastic single crystal. Part I: Anisotropic slip line theory solution for face-centered cubic crystals , 2005 .

[35]  T. Schacht,et al.  The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids , 2003 .

[36]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[37]  Mark F. Horstemeyer,et al.  From Atoms to Autos - A new Design Paradigm Using Microstructure-Property Modeling Part 1: Monotonic Loading Conditions , 2001 .