Subspace-based channel estimation for code division multiple access communication systems

We consider the estimation of channel parameters for code-division multiple access (CDMA) communication systems operating over channels with either single or multiple propagation paths. The multiuser channel estimation problem is decomposed into a series of single user problems through a subspace-based approach. By exploiting the eigenstructure of the received signal's sample correlation matrix, the observation space can be partitioned into a signal subspace and a noise subspace without prior knowledge of the unknown parameters. The channel estimate is formed by projecting a given user's spreading waveform into the estimated noise subspace and then either minimizing the likelihood or minimizing the Euclidean norm of this projection. Both of these approaches yield algorithms which are near-far resistant and do not require a preamble.

[1]  L. B. Milstein,et al.  Theory of Spread-Spectrum Communications - A Tutorial , 1982, IEEE Transactions on Communications.

[2]  Sergio Verdú,et al.  Linear multiuser detectors for synchronous code-division multiple-access channels , 1989, IEEE Trans. Inf. Theory.

[3]  Stefan Parkvall,et al.  Propagation delay estimation in asynchronous direct-sequence code-division multiple access systems , 1996, IEEE Trans. Commun..

[4]  Bin Yang,et al.  Subspace tracking based on the projection approach and the recursive least squares method , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[6]  Sergio Verdú,et al.  Near-far resistance of multiuser detectors in asynchronous channels , 1990, IEEE Trans. Commun..

[7]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[8]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[9]  John G. Proakis,et al.  Digital Communications , 1983 .

[10]  Todd K. Moon,et al.  Average acquisition time for SSMA channels , 1991, MILCOM 91 - Conference record.

[11]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[12]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[13]  Ronald D. DeGroat,et al.  Noniterative subspace tracking , 1992, IEEE Trans. Signal Process..

[14]  A. Swindlehurst,et al.  Subspace-based signal analysis using singular value decomposition , 1993, Proc. IEEE.

[15]  Behnaam Aazhang,et al.  Multistage detection in asynchronous code-division multiple-access communications , 1990, IEEE Trans. Commun..

[16]  Mahesh K. Varanasi,et al.  Multiuser detectors for synchronous CDMA communication over non-selective Rician fading channels , 1994, IEEE Trans. Commun..

[17]  T. Durrani,et al.  A comparative study of modern eigenstructure methods for bearing estimation-A new high performance approach , 1986, 1986 25th IEEE Conference on Decision and Control.

[18]  Behnaam Aazhang,et al.  A multiuser receiver for code division multiple access communications over multipath channels , 1995, IEEE Trans. Commun..

[19]  Upamanyu Madhow,et al.  MMSE interference suppression for direct-sequence spread-spectrum CDMA , 1994, IEEE Trans. Commun..

[20]  S. Seidel,et al.  900-MHz multipath propagation measurements for US digital cellular radiotelephone , 1990 .

[21]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..