A solution algorithm to the inverse kinematic problem for redundant manipulators

Based on a recently proposed algorithmic solution technique, the inverse kinematic problem for redundant manipulators is solved. The kinematics of the manipulator is appropriately augmented to include mentioned constraints; the result is an efficient, fast, closed-loop algorithm which only makes use of the direct kinematics of the manipulator. Simulation results illustrate the tracking performance for a given trajectory in the Cartesian space, while guaranteeing a collision-free trajectory and/or not violating a mechanical joint limit. >

[1]  L. Sciavicco,et al.  A dynamic solution to the inverse kinematic problem for redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[2]  Lorenzo Sciavicco,et al.  An Adaptive Model Following Control for Robotic Manipulators , 1983 .

[3]  Lorenzo Sciavicco,et al.  Robust Control of Robotic Manipulators , 1984 .

[4]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .

[5]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  D. E. Whitney,et al.  The mathematics of coordinated control of prosthetic arms and manipulators. , 1972 .

[7]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[8]  Bruno Siciliano,et al.  An algorithmic approach to coordinate transformation for robotic manipulators , 1987, Adv. Robotics.

[9]  Miomir Vukobratovic,et al.  A dynamic approach to nominal trajectory synthesis for redundant manipulators , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  B. Siciliano,et al.  Solving the Inverse Kinematic Problem for Robotic Manipulators , 1987 .

[11]  Bruno Siciliano,et al.  Coordinate Transformation: A Solution Algorithm for One Class of Robots , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  John Baillieul,et al.  Avoiding obstacles and resolving kinematic redundancy , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[13]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[14]  Beno Benhabib,et al.  A complete generalized solution to the inverse kinematics of robots , 1985, IEEE J. Robotics Autom..

[15]  Jean-Jacques E. Slotine,et al.  The Robust Control of Robot Manipulators , 1985 .

[16]  M. Vukobratovic,et al.  Trajectory Planning for Redundant Manipulators in the Presence of Obstacles , 1985 .

[17]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[18]  Bruno Siciliano,et al.  A general solution algorithm to coordinate transformation for robotic manipulators , 1985 .

[19]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[20]  W. Wolovich,et al.  A computational technique for inverse kinematics , 1984, The 23rd IEEE Conference on Decision and Control.

[21]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[22]  R. Paul,et al.  Kinematic control equations for simple manipulators , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[23]  Bruno Siciliano,et al.  An inverse kinematic solution algorithm for robots with two-by-two intersecting axes at the end effector , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[24]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[25]  Andrew A. Goldenberg,et al.  A Solution to the Inverse Kinematics of Redundant Manipulators , 1985, 1985 American Control Conference.