Adaptive Multilevel Inexact SQP Methods for PDE-Constrained Optimization

We present a class of inexact adaptive multilevel trust-region SQP methods for the efficient solution of optimization problems governed by nonlinear PDEs. The algorithm starts with a coarse discretization of the underlying optimization problem and provides during the optimization process (1) implementable criteria for an adaptive refinement strategy of the current discretization based on local error estimators and (2) implementable accuracy requirements for iterative solvers of the linearized PDE and adjoint PDE on the current grid. We prove global convergence to a stationary point of the infinite-dimensional problem. Moreover, we illustrate how the adaptive refinement strategy of the algorithm can be implemented by using existing reliable a posteriori error estimators for the state and the adjoint equations. Numerical results are presented.

[1]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[2]  Karl Kunisch,et al.  A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..

[3]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[4]  Alfio Borzì,et al.  Multigrid optimization methods for linear and bilinear elliptic optimal control problems , 2008, Computing.

[5]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[6]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[7]  Martin Stynes,et al.  Numerical Treatment of Partial Differential Equations , 2007 .

[8]  Stephen G. Nash,et al.  Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations , 2005, SIAM J. Sci. Comput..

[9]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[10]  Susanne C. Brenner,et al.  Finite Element Methods , 2000 .

[11]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[12]  V. Schulz,et al.  Multigrid optimization in applications , 2000 .

[13]  Michael Hintermüller,et al.  AN A POSTERIORI ERROR ANALYSIS OF ADAPTIVE FINITE ELEMENT METHODS FOR DISTRIBUTED ELLIPTIC CONTROL PROBLEMS WITH CONTROL CONSTRAINTS , 2008 .

[14]  P. Toint,et al.  A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization , 2007 .

[15]  Boris Vexler,et al.  A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints , 2009, Comput. Optim. Appl..

[16]  S. Ulbrich Generalized SQP-Methods with ''Parareal'' Time-Domain Decomposition for Time-dependent PDE-constrained Optimization , 2007 .

[17]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[18]  Alfio Borzì,et al.  Smoothers for control- and state-constrained optimal control problems , 2007 .

[19]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[20]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[21]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[22]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[23]  Elijah Polak,et al.  Consistent Approximations and Approximate Functions and Gradients in Optimal Control , 2002, SIAM J. Control. Optim..

[24]  Michael Hintermüller,et al.  Goal-oriented adaptivity in control constrained optimal control of partial differential equations , 2008, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  Serge Gratton,et al.  Recursive Trust-Region Methods for Multiscale Nonlinear Optimization , 2008, SIAM J. Optim..

[26]  Carsten Carstensen,et al.  Convergence analysis of a conforming adaptive finite element method for an obstacle problem , 2007, Numerische Mathematik.

[27]  C. Kelley,et al.  Truncated Newton Methods for Optimization with Inaccurate Functions and Gradients , 2003 .

[28]  Luís N. Vicente,et al.  Analysis of Inexact Trust-Region SQP Algorithms , 2002, SIAM J. Optim..

[29]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[30]  P. Toint,et al.  A recursive ℓ∞-trust-region method for bound-constrained nonlinear optimization , 2008 .

[31]  John E. Dennis,et al.  A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..

[32]  E. Omojokun Trust region algorithms for optimization with nonlinear equality and inequality constraints , 1990 .