A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions.

Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme.

[1]  K. Ho,et al.  Transferability of the slater-koster tight-binding scheme from an environment-dependent minimal-basis perspective , 2005 .

[2]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations , 1982 .

[3]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[4]  B. C. Carlson,et al.  Orthogonalization Procedures and the Localization of Wannier Functions , 1957 .

[5]  I. Mayer Non-orthogonal localized orbitals and orthogonal atomic hybrids derived from Mulliken's population analysis , 1995 .

[6]  Michael W. Schmidt,et al.  Does methane invert through square planar , 1993 .

[7]  M. Gordon,et al.  Nature of the Transition Metal-Silicon Double Bond , 1992 .

[8]  R. S. Mulliken Criteria for the Construction of Good Self‐Consistent‐Field Molecular Orbital Wave Functions, and the Significance of LCAO‐MO Population Analysis , 1962 .

[9]  Stinne Høst,et al.  Local orbitals by minimizing powers of the orbital variance. , 2011, The Journal of chemical physics.

[10]  G. G. Hall Applications of quantum mechanics in theoretical chemistry , 1959 .

[11]  M. Gordon,et al.  Principal Resonance Contributors to High-Valent, Transition-Metal Alkylidene Complexes , 1991 .

[12]  J. Lennard-jones,et al.  Equivalent orbitals in molecules of known symmetry , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  Michael W. Schmidt,et al.  Triazolium-based energetic ionic liquids. , 2005, The journal of physical chemistry. A.

[14]  A. C. Wahl,et al.  New Techniques for the Computation of Multiconfiguration Self‐Consistent Field (MCSCF) Wavefunctions , 1972 .

[15]  Keith R. Roby,et al.  Quantum theory of chemical valence concepts , 1974 .

[16]  M. Gordon,et al.  Electronic structure studies of tetrazolium-based ionic liquids. , 2006, The journal of physical chemistry. B.

[17]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[18]  J. Weeks,et al.  Non‐Hermitian representations in localized orbital theories , 1973 .

[19]  Martin Head-Gordon,et al.  Extracting polarized atomic orbitals from molecular orbital calculations , 2000 .

[20]  J. Pople,et al.  The molecular orbital theory of chemical valency. IV. The significance of equivalent orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[22]  C Z Wang,et al.  Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. , 2004, The Journal of chemical physics.

[23]  D. Sánchez-Portal,et al.  Analysis of atomic orbital basis sets from the projection of plane-wave results , 1995, cond-mat/9509053.

[24]  G. G. Hall,et al.  Single determinant wave functions , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Klaus Ruedenberg,et al.  Intrinsic local constituents of molecular electronic wave functions. I. Exact representation of the density matrix in terms of chemically deformed and oriented atomic minimal basis set orbitals , 2008 .

[26]  Jerzy Cioslowski,et al.  Atomic orbitals in molecules , 1998 .

[27]  Klaus Ruedenberg,et al.  The Physical Nature of the Chemical Bond , 1962 .

[28]  C. Wang,et al.  Molecule intrinsic minimal basis sets. II. Bonding analyses for Si4H6 and Si2 to Si10. , 2004, The Journal of chemical physics.

[29]  Dimitri N. Laikov,et al.  Intrinsic minimal atomic basis representation of molecular electronic wavefunctions , 2011 .

[30]  W. Adams,et al.  Orbital Theories of Electronic Structure , 1962 .

[31]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[32]  Michael W. Schmidt,et al.  Effects of Spin-Orbit Coupling on Covalent Bonding and the Jahn-Teller Effect Are Revealed with the Natural Language of Spinors. , 2011, Journal of chemical theory and computation.

[33]  B. H. Chirgwin Summation Convention and the Density Matrix in Quantum Theory , 1957 .

[34]  J. Whitten Remarks on the Description of Excited Electronic States by Configuration Interaction Theory and a Study of the 1(π → π*) State of H2CO , 1972 .

[35]  K. Ruedenberg,et al.  Three Millennia of Atoms and Molecules , 2013 .

[36]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[37]  G. G. Hall,et al.  The molecular orbital theory of chemical valency. III. Properties of molecular orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  Richard E. Stanton,et al.  Corresponding Orbitals and the Nonorthogonality Problem in Molecular Quantum Mechanics , 1967 .

[39]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[40]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[41]  István Mayer,et al.  Atomic Orbitals from Molecular Wave Functions: The Effective Minimal Basis , 1996 .

[42]  H. C. Longuet-Higgins,et al.  The electronic structure of conjugated systems I. General theory , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  J. Murrell,et al.  The chemical bond , 1978 .

[44]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[45]  S. Iwata Valence type vacant orbitals for configuration interaction calculations , 1981 .

[46]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg , 2011 .

[47]  Gene H. Golub,et al.  Matrix computations , 1983 .

[48]  Martin Head-Gordon,et al.  Polarized atomic orbitals for self-consistent field electronic structure calculations , 1997 .

[49]  R. Ahlrichs,et al.  Population analysis based on occupation numbers of modified atomic orbitals (MAOs) , 1976 .

[50]  Martin Head-Gordon,et al.  Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. , 2005, The Journal of chemical physics.

[51]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[52]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[53]  Claus Ehrhardt,et al.  Population analysis based on occupation numbers II. Relationship between shared electron numbers and bond energies and characterization of hypervalent contributions , 1985 .

[54]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[55]  Klaus Ruedenberg,et al.  Split-localized orbitals can yield stronger configuration interaction convergence than natural orbitals , 2003 .

[56]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[57]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[58]  M. Gordon,et al.  Effective core potential studies of transition metal bonding, structure and reactivity , 1996 .

[59]  Joseph E. Subotnik,et al.  An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: applications to localized occupied orbitals. , 2004, The Journal of chemical physics.

[60]  C. A. Coulson,et al.  Present State of Molecular Structure Calculations , 1960 .

[61]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[62]  W. Niessen,et al.  Density localization of atomic and molecular orbitals , 1973 .

[63]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[64]  P. Anderson Self-Consistent Pseudopotentials and Ultralocalized Functions for Energy Bands , 1968 .

[65]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[66]  Ernest R. Davidson,et al.  Electronic Population Analysis of Molecular Wavefunctions , 1967 .

[67]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[68]  Eliezer E. Goldschmidt,et al.  A History of Grafting , 2009 .

[69]  G. G. Hall,et al.  The molecular orbital theory of chemical valency VII. Molecular structure in terms of equivalent orbitals , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  Mark S. Gordon,et al.  A comparative study of the bonding in heteroatom analogues of benzene , 1992 .

[71]  Mark S. Gordon,et al.  High-valent transition-metal alkylidene complexes : effect of ligand and substituent modification , 1992 .

[72]  Michael W. Schmidt,et al.  Are atoms sic to molecular electronic wavefunctions? II. Analysis of fors orbitals , 1982 .

[73]  K. Ho,et al.  Representation of electronic structures in crystals in terms of highly localized quasiatomic minimal basis orbitals , 2004 .

[74]  J. Pople,et al.  The molecular orbital theory of chemical valency IX. The interaction of paired electrons in chemical bonds , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  H. Schaefer,et al.  Efficient use of Jacobi rotations for orbital optimization and localization , 1993 .

[76]  Poul Jørgensen,et al.  Pipek–Mezey localization of occupied and virtual orbitals , 2013, J. Comput. Chem..

[77]  Roald Hoffmann,et al.  Stereochemistry of Electrocyclic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[78]  Thomas A. Halgren,et al.  Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods , 1974 .

[79]  Mark S. Gordon,et al.  .pi.-Bond strengths of H2X:YH2: X = Ge, Sn; Y = C, Si, Ge, Sn , 1992 .

[80]  F. Weinhold,et al.  Natural population analysis , 1985 .

[81]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .

[82]  S. Nagase,et al.  Ga−Ga Multiple Bond in Na2[Ar*GaGaAr*] (Ar* = C6H3-2,6-(C6H2-2,4,6-i-Pr3)2) , 2001 .

[83]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[84]  Klaus Ruedenberg,et al.  Intrinsic local constituents of molecular electronic wave functions. II. Electronic structure analyses in terms of intrinsic oriented quasi-atomic molecular orbitals for the molecules FOOH, H2BH2BH2, H2CO and the isomerization HNO → NOH , 2007 .

[85]  C. Coulson The dipole moment of the C—H bond , 1942 .

[86]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .