Material Classification Using Raw Time-of-Flight Measurements

We propose a material classification method using raw time-of-flight (ToF) measurements. ToF cameras capture the correlation between a reference signal and the temporal response of material to incident illumination. Such measurements encode unique signatures of the material, i.e. the degree of subsurface scattering inside a volume. Subsequently, it offers an orthogonal domain of feature representation compared to conventional spatial and angular reflectance-based approaches. We demonstrate the effectiveness, robustness, and efficiency of our method through experiments and comparisons of real-world materials.

[1]  Ko Nishino,et al.  Automatically discovering local visual material attributes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[4]  ZissermanAndrew,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009 .

[5]  Tomohiro Tanikawa,et al.  SpecTrans: Versatile Material Classification for Interaction with Textureless, Specular and Transparent Surfaces , 2015, CHI.

[6]  Wolfgang Heidrich,et al.  Low-budget transient imaging using photonic mixer devices , 2013, ACM Trans. Graph..

[7]  Diego Gutierrez,et al.  Femto-photography , 2013, ACM Trans. Graph..

[8]  Edward H. Adelson,et al.  Exploring features in a Bayesian framework for material recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Edward H. Adelson,et al.  Microgeometry capture using an elastomeric sensor , 2011, SIGGRAPH 2011.

[10]  Yoshinori Kobayashi,et al.  Object Material Classification by Surface Reflection Analysis with a Time-of-Flight Range Sensor , 2010, ISVC.

[11]  Wolfgang Heidrich,et al.  Imaging in scattering media using correlation image sensors and sparse convolutional coding. , 2014, Optics express.

[12]  Chao Liu,et al.  Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF , 2012, CVPR.

[13]  Reinhard Koch,et al.  Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications , 2013, Lecture Notes in Computer Science.

[14]  Chao Liu,et al.  Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Reinhard Klein,et al.  Solving trigonometric moment problems for fast transient imaging , 2015, ACM Trans. Graph..

[16]  Ramesh Raskar,et al.  A light transport model for mitigating multipath interference in Time-of-flight sensors , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Helmut Fischer,et al.  New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD) , 1997, Other Conferences.

[18]  Ramesh Raskar,et al.  Single view reflectance capture using multiplexed scattering and time-of-flight imaging , 2011, SA '11.

[19]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[20]  Michael Weinmann,et al.  A Short Survey on Optical Material Recognition , 2015, Material Appearance Modeling.

[21]  Scott Sorensen,et al.  Material classification with thermal imagery , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Wolfgang Heidrich,et al.  Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Hang Zhang,et al.  Reflectance hashing for material recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Pattie Maes,et al.  Flexpad: highly flexible bending interactions for projected handheld displays , 2013, CHI.

[25]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[26]  Michael J. Cree,et al.  Separating true range measurements from multi-path and scattering interference in commercial range cameras , 2011, Electronic Imaging.

[27]  Mirko Schmidt,et al.  SRA: Fast Removal of General Multipath for ToF Sensors , 2014, ECCV.

[28]  Frédo Durand,et al.  Visual vibrometry: Estimating material properties from small motions in video , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[30]  Matthew O'Toole,et al.  Decomposing global light transport using time of flight imaging , 2012, CVPR.