A Rule-Based Hybrid Method for Anomaly Detection in Online-Social-Network Graphs

Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.

[1]  Richi Nayak,et al.  Analyzing the Effectiveness of Graph Metrics for Anomaly Detection in Online Social Networks , 2012, WISE.

[2]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[3]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  Diane J. Cook,et al.  Graph-based anomaly detection , 2003, KDD '03.

[6]  Nisheeth Shrivastava,et al.  Mining (Social) Network Graphs to Detect Random Link Attacks , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[7]  A. Madansky Identification of Outliers , 1988 .

[8]  Stanley Wasserman,et al.  Social Network Analysis: Social Network Analysis in the Social and Behavioral Sciences , 1994 .

[9]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[10]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[11]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[13]  Lawrence B. Holder,et al.  Graph-Based Data Mining , 2000, IEEE Intell. Syst..

[14]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[15]  Zizi Papacharissi A Networked Self , 2010 .

[16]  Hanghang Tong,et al.  Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection , 2011, SDM.

[17]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[18]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[19]  Laura Maruster,et al.  Encyclopedia of data warehousing and mining , 2008 .

[20]  Theodore Johnson,et al.  Fast Computation of 2-Dimensional Depth Contours , 1998, KDD.

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  João Gama,et al.  An overview of social network analysis , 2012, WIREs Data Mining Knowl. Discov..

[23]  Christos Faloutsos,et al.  LOCI: fast outlier detection using the local correlation integral , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).