A Separation Bound for Real Algebraic Expressions
暂无分享,去创建一个
Kurt Mehlhorn | Stefan Funke | Stefan Schirra | Susanne Schmitt | Christoph Burnikel | K. Mehlhorn | S. Funke | S. Schirra | Christoph Burnikel | S. Schmitt
[1] T. Rella. Vorlesungen über die Theorie der algebraischen Zahlen , 1926 .
[2] Maurice Mignotte,et al. Identification of Algebraic Numbers , 1982, J. Algorithms.
[3] R. Loos. Computing in Algebraic Extensions , 1983 .
[4] John Canny,et al. The complexity of robot motion planning , 1988 .
[5] Kurt Mehlhorn,et al. LEDA: A Library of Efficient Data Types and Algorithms , 1990, ICALP.
[6] Maurice Mignotte,et al. Mathematics for computer algebra , 1991 .
[7] Kurt Mehlhorn,et al. How to Compute the Voronoi Diagram of Line Segments: Theoretical and Experimental Results , 1994, ESA.
[8] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[9] Chee Yap,et al. The exact computation paradigm , 1995 .
[10] K. Mehlhorn,et al. The LEDA class real number , 1996 .
[11] Kurt Mehlhorn,et al. The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.
[12] Chee-Keng Yap,et al. Towards Exact Geometric Computation , 1997, Comput. Geom..
[13] Kurt Mehlhorn,et al. Efficient exact geometric computation made easy , 1999, SCG '99.
[14] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[15] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[16] Edward R. Scheinerman,et al. When Close Enough Is Close Enough , 2000, Am. Math. Mon..
[17] Kurt Mehlhorn,et al. A Strong and Easily Computable Separation Bound for Arithmetic Expressions Involving Radicals , 2000, Algorithmica.
[18] Chee-Keng Yap,et al. A new constructive root bound for algebraic expressions , 2001, SODA '01.
[19] Kurt Mehlhorn,et al. Exact Computation with leda_real - Theory and geometric Applications , 2001, Symbolic Algebraic Methods and Verification Methods.
[20] W. Ruppert,et al. Algebraische Zahlentheorie , 2008 .