An assertion graph based abstraction algorithm in GSTE and Its application

Abstract Generalized Symbolic Trajectory Evaluation (GSTE) is an alternative model checking technique based on particular automata to specify the properties. Despite the success of GSTE, its state explosion remains a major hurdle when applying it to large industrial designs. This paper presents two efficient theoretical underpinning abstraction algorithms based on assertion graph to combat the state explosion problem. We implement these two algorithms as a prototype system for discrete models. Experimental results show that the prototype system is 10 × faster than the former without abstraction.

[1]  A. Prasad Sistla,et al.  Symmetry and model checking , 1996, Formal Methods Syst. Des..

[2]  Fabio Somenzi,et al.  Incremental, Inductive CTL Model Checking , 2012, CAV.

[3]  Somesh Jha,et al.  Exploiting symmetry in temporal logic model checking , 1993, Formal Methods Syst. Des..

[4]  Jandson S. Ribeiro,et al.  A 3-Valued Contraction Model Checking Game: Deciding on the World of Partial Information , 2015, ICFEM.

[5]  Philippe Schnoebelen,et al.  Systems and Software Verification, Model-Checking Techniques and Tools , 2001 .

[6]  Jin Yang GSTE: an Illustrative and comparative introduction , 2003, ASICON 2003.

[7]  Supratik Chakraborty,et al.  Symbolic trajectory evaluation for word-level verification: theory and implementation , 2017, Formal Methods Syst. Des..

[8]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[9]  Hassen Saïdi,et al.  Construction of Abstract State Graphs with PVS , 1997, CAV.

[10]  Jin Tian,et al.  Safety Is an Emergent Property: Illustrating Functional Resonance in Air Traffic Management with Formal Verification , 2017 .

[11]  Vincent Cheval APTE: An Algorithm for Proving Trace Equivalence , 2014, TACAS.

[12]  Marco Pistore,et al.  NuSMV 2: An OpenSource Tool for Symbolic Model Checking , 2002, CAV.

[13]  Carlo Ghezzi,et al.  Formal Verification With Confidence Intervals to Establish Quality of Service Properties of Software Systems , 2016, IEEE Transactions on Reliability.

[14]  Daniel G. Saab,et al.  Automatic Assertion Generation for Simulation, Formal Verification and Emulation , 2017, 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[15]  Guowu Yang,et al.  Implication of assertion graphs in GSTE , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[16]  A. Goel,et al.  GSTE through a case study , 2002, ICCAD.

[17]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[18]  Marsha Chechik,et al.  Symbolic optimization with SMT solvers , 2014, POPL.

[19]  Edmund M. Clarke,et al.  Symbolic Model Checking with Partitioned Transistion Relations , 1991, VLSI.

[20]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[21]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[22]  Fei Xie,et al.  Automatic Abstraction Refinement for Generalized Symbolic Trajectory Evaluation , 2007 .

[23]  Wojciech Penczek,et al.  BDD-versus SAT-based bounded model checking for the existential fragment of linear temporal logic with knowledge: algorithms and their performance , 2013, Autonomous Agents and Multi-Agent Systems.

[24]  Luca Bortolussi,et al.  Smoothed model checking for uncertain Continuous-Time Markov Chains , 2014, Inf. Comput..

[25]  Nikolaj Bjørner,et al.  Property-Directed Shape Analysis , 2014, CAV.

[26]  Patrice Godefroid,et al.  May/Must Abstraction-Based Software Model Checking for Sound Verification and Falsification , 2014, Software Systems Safety.

[27]  Wolfgang Bibel,et al.  Advances in Connection-Based Automated Theorem Proving , 2017, Provably Correct Systems.

[28]  Kurt Jensen Condensed state spaces for symmetrical Coloured Petri Nets , 1996, Formal Methods Syst. Des..

[29]  Alan J. Hu,et al.  Efficient Generation of Monitor Circuits for GSTE Assertion Graphs , 2003, ICCAD 2003.

[30]  Helmut Veith,et al.  Counterexample-guided abstraction refinement for symbolic model checking , 2003, JACM.

[31]  Ching-Tsun Chou,et al.  The Mathematical Foundation fo Symbolic Trajectory Evaluation , 1999, CAV.

[32]  Michael S. Hsiao,et al.  Selecting critical implications with set-covering formulation for SAT-based Bounded Model Checking , 2013, 2013 IEEE 31st International Conference on Computer Design (ICCD).

[33]  Zhiwei Xu,et al.  Automatic belief network modeling via policy inference for SDN fault localization , 2016, Journal of Internet Services and Applications.

[34]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[35]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[36]  Nima Jafari Navimipour,et al.  An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: Formal verification, simulation, and statistical testing , 2017, J. Syst. Softw..

[37]  Randal E. Bryant,et al.  Formal hardware verification by symbolic trajectory evaluation , 1997 .

[38]  Fei Xie,et al.  Automatic Abstraction Refinement for Generalized Symbolic Trajectory Evaluation , 2007, Formal Methods in Computer Aided Design (FMCAD'07).