Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups using 1 degree of freedom (1df) interaction and 2df joint tests. Primary multi-ancestry analyses in 62,969 individuals in stage 1 identified 3 novel loci that were replicated in an additional 59,296 individuals in stage 2, including rs7955964 (FIGNL2/ANKRD33) showing significant 1df interactions with long sleep duration and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) showing significant 1df interactions with short sleep duration (Pint < 5×10−8). Secondary ancestry-specific two-stage analyses and combined stage 1 and 2 analyses additionally identified 23 novel loci that need external replication, including 3 and 5 loci showing significant 1df interactions with long and short sleep duration, respectively (Pint < 5×10−8). Multiple genes mapped to our 26 novel loci have known functions in sleep-wake regulation, nervous and cardiometabolic systems. We also identified new gene by long sleep interactions near five known BP loci (≤1Mb) including NME7, FAM208A, MKLN1, CEP164, and RGL3/ELAVL3 (Pint < 5×10−8). This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.

Nicholette D. Palmer | Sina A. Gharib | M. Fornage | C. Gieger | M. Waldenberger | A. Uitterlinden | D. Levy | A. Peters | I. Deary | R. Mägi | A. Luik | S. Redline | T. Lehtimäki | E. Boerwinkle | K. Strauch | P. Munroe | V. Gudnason | C. Bouchard | A. Zonderman | M. Evans | T. Rice | L. Palmer | T. Meitinger | K. Lohman | Yongmei Liu | B. Psaty | B. Penninx | D. Arking | A. Metspalu | T. Esko | H. Snieder | L. Milani | J. Rotter | D. Gottlieb | T. Lakka | R. Rauramaa | B. Cade | X. Shu | W. Zheng | J. Starr | D. Rao | Han Chen | T. Sofer | K. Rice | Xiaofeng Zhu | C. V. van Duijn | J. Shikany | Xiuqing Guo | H. Grabe | U. Völker | K. North | M. Ikram | S. Harris | J. Bis | S. Rich | N. Amin | G. Eiriksdottir | M. Kähönen | L. Launer | S. Mukherjee | T. Rankinen | Y. Sung | T. Winkler | N. Franceschini | D. Vojinović | S. Musani | A. Bentley | Michael R. Brown | K. Schwander | Melissa A. Richard | R. Noordam | H. Aschard | T. Bartz | A. Horimoto | A. Manning | M. Alver | Chuan Gao | P. Komulainen | B. Kühnel | I. Nolte | P. J. van der Most | S. Weiss | W. Wen | Jiang He | S. Heikkinen | T. Kilpeläinen | J. Krieger | Y. Milaneschi | J. O'connell | N. Palmer | P. Schreiner | M. Sims | Jie Yao | L. Wagenknecht | A. Pereira | D. Mook-Kanamori | T. Kelly | E. Fox | C. Kooperberg | W. Palmas | A. Morrison | Ching‐Ti Liu | L. Lyytikäinen | Yii-Der I. Chen | S. Gharib | D. Hillman | P. Zee | M. Dörr | D. van Heemst | G. Wilson | T. Roenneberg | A. Barac | R. Wallace | M. Ikram | Heming Wang | P. D. de Vries | J. Gauderman | E. Lim | L. Martin | Traci M Bartz | N. Biermasz | Hanfei Xu | K. Chitrala | Jiwon Lee | S. Sidney | Peter J. van der Most | Traci M. Bartz | J. Nierenberg | R. Waken | Jovia L. Nierenberg | Marjan Ilkov | K. A. Hall | S. Rich | M. Brown | J. Yao | H. Grabe | D. Rao | Maris Alver | K. Hall | Y. Chen | Alexandre C. Pereira | Xiaofeng Zhu | A. Pereira | Michael R. Brown | M. Richard | R. Waken | M. Kähönen | A. Uitterlinden | José E. Krieger | C. V. van Duijn | B. Psaty | Brigitte Kühnel | S. Harris | A. Peters | D. Levy | A. Peters | Michael R. Brown | Jeffery R O'connell | D. Vojinovic | K. Chitrala

[1]  Fernando Pires Hartwig,et al.  A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. , 2018, American journal of human genetics.

[2]  V. de Waard,et al.  NR4A nuclear receptors in cardiac remodeling and neurohormonal regulation. , 2019, Trends in cardiovascular medicine.

[3]  Kathryn J Reid,et al.  Circadian misalignment and health , 2014, International review of psychiatry.

[4]  Xiaofeng Zhu,et al.  Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. , 2015, American journal of human genetics.

[5]  Min Zhang,et al.  Short sleep duration predicts risk of metabolic syndrome: a systematic review and meta-analysis. , 2014, Sleep medicine reviews.

[6]  Anita L. DeStefano,et al.  Evidence for a Gene Influencing Blood Pressure on Chromosome 17: Genome Scan Linkage Results for Longitudinal Blood Pressure Phenotypes in Subjects From the Framingham Heart Study , 2000, Hypertension.

[7]  Michelle L. Gumz,et al.  Circadian clock-mediated regulation of blood pressure. , 2017, Free radical biology & medicine.

[8]  Max A. Little,et al.  Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates , 2019, Nature Communications.

[9]  S. Redline,et al.  Agreement between self-reported and objectively measured sleep duration among white, black, Hispanic, and Chinese adults in the United States: Multi-Ethnic Study of Atherosclerosis , 2018, Sleep.

[10]  Max A. Little,et al.  Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes , 2019, Nature Communications.

[11]  P. O’Reilly,et al.  Genome-wide association study identifies eight loci associated with blood pressure , 2009, Nature Genetics.

[12]  John P Elder,et al.  Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. , 2010, Annals of epidemiology.

[13]  J. Gangwisch,et al.  A review of evidence for the link between sleep duration and hypertension. , 2014, American journal of hypertension.

[14]  B. Rayner,et al.  Differences in hypertension between blacks and whites: an overview , 2007, Cardiovascular journal of Africa.

[15]  Keith C. Norris,et al.  The relationship between body mass index, blood pressure and pulse rate among normotensive and hypertensive participants in the third National Health and Nutrition Examination Survey (NHANES). , 2003, Cellular and molecular biology.

[16]  B. Xi,et al.  Short sleep duration is associated with hypertension risk among adults: a systematic review and meta-analysis , 2012, Hypertension Research.

[17]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[18]  N. Risch,et al.  Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation , 2016, Nature Genetics.

[19]  He Gao,et al.  Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk , 2017, Nature Genetics.

[20]  L. Hale,et al.  Racial differences in self-reports of sleep duration in a population-based study. , 2007, Sleep.

[21]  J. Danesh,et al.  Association analyses based on false discovery rate implicate new loci for coronary artery disease , 2017, Nature Genetics.

[22]  Andrew D. Johnson,et al.  Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes , 2018, Nature Genetics.

[23]  Lon Phan,et al.  Phenotype–Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources , 2013, European Journal of Human Genetics.

[24]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[25]  Mark E. Anderson,et al.  Ankyrin-B Protein in Heart Failure , 2012, The Journal of Biological Chemistry.

[26]  Florian Kronenberg,et al.  EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data , 2015, Bioinform..

[27]  R. Bootzin,et al.  Relationship between reported and measured sleep times: the sleep heart health study (SHHS). , 2007, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine.

[28]  Alex H. Wagner,et al.  DGIdb 3.0: a redesign and expansion of the drug–gene interaction database , 2017, bioRxiv.

[29]  Max A. Little,et al.  Biological and clinical insights from genetics of insomnia symptoms , 2019, Nature Genetics.

[30]  Avis J. Thomas,et al.  Lifetime risks of cardiovascular disease. , 2012, The New England journal of medicine.

[31]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[32]  Richard T. Barfield,et al.  Epigenome-wide association analysis of daytime sleepiness in the Multi-Ethnic Study of Atherosclerosis reveals African-American-specific associations , 2018, bioRxiv.

[33]  C. Romanin,et al.  Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3-NCX1 signaling complex. , 2007, Cardiovascular research.

[34]  Karsten B. Sieber,et al.  Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels , 2019, Nature Genetics.

[35]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[36]  Kazuomi Kario,et al.  Sleep Duration as a Risk Factor for Cardiovascular Disease- a Review of the Recent Literature , 2009, Current cardiology reviews.

[37]  R. Davis,et al.  Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy. , 2018, Cell metabolism.

[38]  Erdogan Taskesen,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[39]  T. Furukawa,et al.  Panky, a novel photoreceptor‐specific ankyrin repeat protein, is a transcriptional cofactor that suppresses CRX‐regulated photoreceptor genes , 2010, FEBS letters.

[40]  A. Malhotra,et al.  The Relationship between Sleep Duration and Body Mass Index Depends on Age , 2015, Obesity.

[41]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[42]  Laura J. Scott,et al.  Trans-ethnic association study of blood pressure determinants in over 750,000 individuals , 2018, Nature Genetics.

[43]  D. Hunter Gene–environment interactions in human diseases , 2005, Nature Reviews Genetics.

[44]  Andrew D. Johnson,et al.  Genome-wide association study of blood pressure and hypertension , 2009, Nature Genetics.

[45]  M. Langgård,et al.  Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex , 2014, Acta crystallographica. Section D, Biological crystallography.

[46]  J. Lane,et al.  Sleep Duration and Myocardial Infarction. , 2019, Journal of the American College of Cardiology.

[47]  Christian Gieger,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[48]  Achim Zeileis Object-oriented Computation of Sandwich Estimators , 2006 .

[49]  Francesca N. Delling,et al.  Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association , 2019, Circulation.

[50]  D. Schmitz,et al.  Muskelin Regulates Actin Filament- and Microtubule-Based GABAA Receptor Transport in Neurons , 2011, Neuron.

[51]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[52]  Xinli Hu,et al.  SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci , 2014, Bioinform..

[53]  S. Pradervand,et al.  The circadian clock modulates renal sodium handling. , 2012, Journal of the American Society of Nephrology : JASN.

[54]  L. Soane,et al.  KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders , 2019, CNS neuroscience & therapeutics.

[55]  A. Adeyemo,et al.  Genome Scan Among Nigerians Linking Blood Pressure to Chromosomes 2, 3, and 19 , 2002, Hypertension.

[56]  Xiaofeng Zhu,et al.  Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations , 2017, PLoS genetics.

[57]  G. Jean-Louis,et al.  Sleep duration among black and white Americans: results of the National Health Interview Survey. , 2008, Journal of the National Medical Association.

[58]  M. Adeva-Andany,et al.  Liver glucose metabolism in humans , 2016, Bioscience reports.

[59]  Samuel E. Jones,et al.  Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms , 2019, Nature Communications.

[60]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[61]  V. M. V. Program A catalog of genetic loci associated with kidney function from analyses of a million individuals , 2019 .

[62]  Meena Kumari,et al.  Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour , 2019, Nature Communications.

[63]  D. Strachan,et al.  LDL-cholesterol concentrations: a genome-wide association study , 2008, The Lancet.

[64]  R. Parenti,et al.  Connexins in the Central Nervous System: Physiological Traits and Neuroprotective Targets , 2017, Front. Physiol..

[65]  He Zhang,et al.  Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension , 2016, Nature Genetics.

[66]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[67]  Duo Li,et al.  Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits , 2013, PloS one.

[68]  Claude Bouchard,et al.  Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci , 2016, Nature Genetics.

[69]  R. Aguilar-Roblero,et al.  Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System , 2013, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[70]  H. Schindelin,et al.  The LisH motif of muskelin is crucial for oligomerization and governs intracellular localization. , 2015, Structure.

[71]  Xiaofeng Zhu,et al.  VarExp: Estimating variance explained by Genome-Wide GxE summary statistics , 2017, bioRxiv.

[72]  Masahiko Watanabe,et al.  Elavl3 is essential for the maintenance of Purkinje neuron axons , 2018, Scientific Reports.

[73]  P. Munroe,et al.  Multiancestry Study of Gene–Lifestyle Interactions for Cardiovascular Traits in 610 475 Individuals From 124 Cohorts: Design and Rationale , 2017, Circulation. Cardiovascular genetics.

[74]  Xiaofeng Zhu,et al.  Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. , 2013, American journal of human genetics.

[75]  Alan D. Lopez,et al.  A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[76]  Richard A. Gibbs,et al.  Novel Genetic Loci Identified for the Pathophysiology of Childhood Obesity in the Hispanic Population , 2012, PloS one.

[77]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[78]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[79]  M Mancuso,et al.  Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease , 2012, Molecular Psychiatry.

[80]  Xiaofeng Zhu,et al.  The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals , 2016, Nature Genetics.

[81]  Christian Gieger,et al.  Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.

[82]  Karsten B. Sieber,et al.  Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria , 2019, Nature Communications.

[83]  M. Nelson,et al.  Ryanodine Receptors, Calcium Signaling, and Regulation of Vascular Tone in The Cerebral Parenchymal Microcirculation , 2013, Microcirculation.

[84]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[85]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[86]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[87]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[88]  Christian Gieger,et al.  Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits , 2018, Nature Genetics.

[89]  Nicholette D. Palmer,et al.  Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration , 2019, Nature Communications.

[90]  J. Segovia,et al.  Gas1 is a pleiotropic regulator of cellular functions: from embryonic development to molecular actions in cancer gene therapy. , 2014, Mini reviews in medicinal chemistry.